
Numerical Methods for CSE (Autumn Semester 2016 · ETH Zürich)

Numerical Methods for CSE

Cumulative Sums
and Reusing Intermediate Results

(Explanation of Exercise 1.7)

Giuseppe Accaputo
g@accaputo.ch

October 3, 2016

In this document I will guide you through the efficient implementation
of the matrix-vector product y = Ax as shown in exercise 1.7.b [1], where
(A)i,j = ai,j = min{i, j} for i, j = 1, . . . , n.

Notation

Throughout this document I will be using the following notation in math-
ematical formulas:

x : Column vector (small letter, bold)
xT : Row vector (small letter, bold, transposed)
A: Matrix (large letter, bold)

Step 1: Visualize the Matrix A

From the given definition (A)i,j = ai,j = min{i, j} for i, j = 1, . . . , n it
follows that A has the form

Giuseppe Accaputo 1 www.accaputo.ch

www.accaputo.ch


Numerical Methods for CSE (Autumn Semester 2016 · ETH Zürich)

A =



1 1 1 . . . 1 1
1 2 2 . . . 2 2
1 2 3 . . . 3 3
...

...
1 2 3 . . . n− 1 n− 1
1 2 3 . . . n− 1 n


(1)

Step 2: Visualize the Matrix-Vector Product y = Ax

Using A from Eq. 1, the matrix-vector product y = Ax looks as follows:

Ax = y =



1x1 + 1x2 + 1x3 + · · ·+ 1xn−2 + 1xn−1 + 1xn
1x1 + 2x2 + 2x3 + · · ·+ 2xn−2 + 2xn−1 + 2xn
1x1 + 2x2 + 3x3 + · · ·+ 3xn−2 + 3xn−1 + 3xn
...
1x1 + 2x2 + 3x3 + · · ·+ (n− 2)xn−2 + (n− 2)xn−1 + (n− 2)xn
1x1 + 2x2 + 3x3 + · · ·+ (n− 2)xn−2 + (n− 1)xn−1 + (n− 1)xn
1x1 + 2x2 + 3x3 + · · ·+ (n− 2)xn−2 + (n− 1)xn−1 + nxn


(2)

Cumulative Sums and Reusing Intermediate Results

If we further analyze the resulting vector y in Eq. 2, we can see that each
entry consists of partial sums [2] (colored in black in Eq. 3) of the sequence
{i xi}n

i=1 = x1, 2 x2, 3 x3, . . . , n xn:

Ax = y =



1x1+1x2 + 1x3 + · · ·+ 1xn−2 + 1xn−1 + 1xn
1x1 + 2x2+2x3 + · · ·+ 2xn−2 + 2xn−1 + 2xn
1x1 + 2x2 + 3x3+ · · ·+ 3xn−2 + 3xn−1 + 3xn
...
1x1 + 2x2 + 3x3 + · · ·+ (n− 2)xn−2+(n− 2)xn−1 + (n− 2)xn
1x1 + 2x2 + 3x3 + · · ·+ (n− 2)xn−2 + (n− 1)xn−1+(n− 1)xn
1x1 + 2x2 + 3x3 + · · ·+ (n− 2)xn−2 + (n− 1)xn−1 + nxn


(3)

The sums in the blackened part of y in Eq. 3 are actually part of the
cumulative sum [3] of the sequence {i xi}n

i=1. A cumulative sum is a se-
quence of partial sums of a sequence. In the case of the sequence {i xi}n

i=1
the cumulative sum is defined as

x1, x1 + 2x2, x1 + 2x2 + 3x3︸ ︷︷ ︸
partial sum

, . . . , x1 + 2x2 + · · ·+ (n− 1)xn−1 + nxn (4)

Giuseppe Accaputo 2 www.accaputo.ch

www.accaputo.ch


Numerical Methods for CSE (Autumn Semester 2016 · ETH Zürich)

As we know from the lecture [4], complexity can sometimes be reduced
by reusing intermediate results. By having a closer look at Eq. 3, we
can see that some partial sums reappear again in multiple components
of the result vector y, e.g. x1 + 2x2 reappears in the partial sum x1 +
2x2 + 3x3, and so on. Thus, we can try to reuse each partial sum in the
calculation of the next partial sum, which can be accomplished by defining
the cumulative sum of {i xi}n

i=1 recursively as follows:

w1 = x1, wj = wj−1 + jxj for j = 2, . . . , n (5)

In a next step we try to reuse intermediate results for the gray part of
Eq. 3. For one, we define the vector w as follows:

w =


x1

w1 + 2x2
w2 + 3x3

...
wn−1 + nxn

 (6)

If we rewrite Eq. 3 as follows

y = w +



1x2 + 1x3 + · · ·+ 1xn−1 + 1xn
2x3 + · · ·+ 2xn−1 + 2xn

...
(n− 2)xn−1 + (n− 2)xn

(n− 1)xn
0


︸ ︷︷ ︸

:=u

(7)

we can see that the vector u on the right can be rewritten as

u =



x2 + x3 + · · ·+ xn−1 + xn
2(x3 + · · ·+ xn−1 + xn)

...
(n− 2)(xn−1 + xn)

(n− 1)xn
0


(8)

and thus we observe that the components of u resemble a cumulative
sum of the backward sequence {xi}2

i=n = xn, xn−1, . . . , x2 (each partial sum

Giuseppe Accaputo 3 www.accaputo.ch

www.accaputo.ch


Numerical Methods for CSE (Autumn Semester 2016 · ETH Zürich)

is multiplied by a constant factor):

u1 = 1(x2 + x3 + · · ·+ xn−1 + xn)

u2 = 2(x3 + · · ·+ xn−1 + xn)

...
un−3 = (n− 3)(xn−2 + xn−1 + xn)

un−2 = (n− 2)(xn−1 + xn)

un−1 = (n− 1)xn

(9)

As we can see, the factor that multiplies the partial sums of the cu-
mulative sum of {xi}2

i=n in each component is just the component index
j = 1, . . . , n− 1. Further, let vj be the the j-th partial sum of the cumulative
sum of {xi}2

i=n (without the multiplying factor), i.e.

vj =
n

∑
k=j+1

xk (10)

giving

v =

 v1
...

vn−1

 (11)

with components

v1 = x2 + x3 + · · ·+ xn−1 + xn

v2 = x3 + · · ·+ xn−1 + xn

...
vn−3 = xn−2 + xn−1 + xn

vn−2 = xn−1 + xn

vn−1 = xn

Since the partial sum vj contains the complete precedent partial sum vj+1
(e.g. vn−3 = vn−2 + xn−2), vj can be defined recursively with

vn−1 = xn, vj = vj+1 + xj+1 for j = n− 2, . . . , 1 (12)

Thus, for a component uj of the vector u we get

uj = j vj for j = 1, . . . , n− 1 (13)

Giuseppe Accaputo 4 www.accaputo.ch

www.accaputo.ch


Numerical Methods for CSE (Autumn Semester 2016 · ETH Zürich)

and finally for our result vector y we would have

yn = wn, , yj = wj + uj = wj + j vj for j = 1, . . . , n− 1 (14)

If � denotes the componentwise multiplication of two column-vectors, i.e.

a� b =


a1 · b1
a2 · b2

...
an · bn

 (15)

then u can be defined as

u =


1
2
...

n− 1

� v . (16)

If we would leave it at Eq. 14, we would need three separate for-loops in
our code; one for-loop to initialize w (Eq. 5), another one to initialize v
(Eq. 16) and a final one to calculate y (Eq. 14). This would be fine in regard
to the algorithm’s complexity, since we managed to move from O(n2) to
O(n), but we would still need three for-loops in our implementation.

A more efficient implementation of the algorithm can be achieved by
initializing both w and v within the same for-loop and thus removing
one for-loop. This can be accomplished by reversing the order on how we
define v recursively; instead of going from j = n− 2, . . . , 1 we now define
a ṽj recursively for j = 2, . . . , n− 1, starting with ṽ1 = xn:

ṽ1 = xn, ṽj = ṽj−1 + xn−j+1 for j = 2, . . . , n− 1 (17)

resulting in

ṽ1 = xn

ṽ2 = xn−1 + xn

...
ṽn−2 = x3 + · · ·+ xn−1 + xn

ṽn−1 = x2 + x3 + · · ·+ xn−1 + xn

which is the reversed version of v in Eq. 12.
We now have to update the calculation of y shown in Eq. 14 since we

are now working with ṽj from Eq. 17, thus resulting in

yn = wn, yj = wj + j ṽn−j for j = 1, . . . , n− 1 (18)

The initialization of both w (Eq. 5) and ṽ (Eq. 17), and the final calcu-
lation of y (Eq. 18) can now be done with two for-loops:

Giuseppe Accaputo 5 www.accaputo.ch

www.accaputo.ch


Numerical Methods for CSE (Autumn Semester 2016 · ETH Zürich)

v(0) = x(n-1);

w(0) = x(0);

for(unsigned int j = 1; j < n; ++j) {

v(j) = v(j-1) + x(n-j-1);

w(j) = w(j-1) + (j+1)*x(j);

}

for(unsigned int j = 0; j < n-1; ++j) {

y(j) = w(j) + v(n-j-2)*(j+1);

}

y(n-1) = w(n-1);

It is important to note that xn−j+1 in Eq. 17 is accessed with x(n-j-1)

↪→ in the code and ṽn−j in Eq. 18 with v(n-j-2), both depending on the
different definitions of the variable j used in both for-loops respectively.

References

[1] R. Hiptmair, “Numerical methods for computational science and en-
gineering, homework problems.” https://www.sam.math.ethz.ch/

~grsam/HS16/NumCSE/NCSEProblems.pdf, 2016.

[2] E. W. Weisstein, “Partial sum. From MathWorld—A Wolfram Web Re-
source.” http://mathworld.wolfram.com/PartialSum.html.

[3] E. W. Weisstein, “Cumulative sum. From MathWorld—A Wolfram Web
Resource.” http://mathworld.wolfram.com/Projection.html.

[4] R. Hiptmair, “Numerical methods for computational science and en-
gineering.” https://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/

NumCSE16.pdf, 2016.

Giuseppe Accaputo 6 www.accaputo.ch

https://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/NCSEProblems.pdf
https://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/NCSEProblems.pdf
http://mathworld.wolfram.com/PartialSum.html
http://mathworld.wolfram.com/Projection.html
https://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/NumCSE16.pdf
https://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/NumCSE16.pdf
www.accaputo.ch

