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Abstract. Eigenvalue problems arise in many computational science and
engineering applications. In this thesis, algorithms for computing few of
the smallest (or largest) eigenvalues and associated eigenvectors of the large
sparse generalized eigenvalue problem Ax = λBx are derived and com-
pared. The trace minimization method by Sameh and Wisniewski [13] is
derived and a detailed proof of the trace theorem [13] is presented. A char-
acterization of the trace minimization method as a quasi-Newton method
is given by deriving expressions for the Hessian matrix and the gradient.
The Jacobi-Davidson method by Sleijpen & van der Vorst [14, 15] is derived
and compared to the trace minimization method. The Davidson-type trace
minimization method by Sameh and Tong [12] is introduced as a subspace
expanding trace minimization method and compared to the block Jacobi-
Davidson method.

1. Introduction
We consider the problem of computing a few of the smallest eigenvalues or
eigenvectors of the large, sparse, generalized eigenvalue problem

Ax = λBx , (1)

where x ∈ Rn, λ ∈ R and A,B are n× n symmetric matrices, with B being
positive-definite. The matrix A − λB is called a matrix pencil, with λ being
the eigenvalue and x the eigenvector of the pencil (A,B) in Eq. (1) [10].
In general, only a few of the eigenvalues and the associated eigenvectors
are desired. The matrices A and B have no general pattern of nonzeros, in
which case factorization of either matrix would be impractical.

Throughout this paper we use the notion of Householder [7]. Except for
dimensions and indices, or when otherwise indicated, lower case Greek let-
ters represent scalars; lower case Latin letters column vectors; capital letters,
Greek or Latin, matrices.

2. The Trace Theorem
The following theorems are instrumental in formulating an extreme eigenspace
computation as an optimization problem. Recall that tr(A), the trace of A,
denotes the sum of the diagonal elements of A. Further, the trace of a matrix
is invariant to similarity transformations.

Theorem 1. [6] Let A and B be symmetric n × n matrices. If B is positive-
definite then there is an n× n matrix Z for which

ZTBZ = In and ZTAZ = Λ = diag(λ1, λ2, . . . , λn) , (2)
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where λ1, λ2, . . . , λn are the eigenvalues of problem (1) and the columns of Z
are their associated eigenvectors. Furthermore, if A is positive-definite, then all
of the eigenvalues λi are positive.

Theorem 2. (Trace Theorem [13]) Let A and B be given as in Theorem 1 and
Y∗ be the set of all n× p matrices Y for which YTBY = Ip. Then

min
Y∈Y∗

tr(YTAY) =

p∑
i=1

λi . (3)

In other words,

min
Y∈Y∗

tr(YTAY) = tr(XTAX) (4)

with

XTBX = Ip and XTAX = diag(λ1, λ2, . . . , λp) , (5)

where X corresponds to the first p columns of the matrix Z of Theorem 1.

Proof. For the proof of Theorem 2 we first recall the following theorem:

Theorem 3. (Poincaré Separation Theorem [8, 5]) Let A be a real symmetric
n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and let G be a semi-
unitary n × k matrix (1 ≤ k ≤ n), so that GTG = Ik. Then the eigenvalues
µ1 ≤ µ2 ≤ · · · ≤ µk of GTAG satisfy

λi ≤ µi ≤ λn−k+i (i = 1, 2, . . . , k) . (6)

Since A and B are given as in Theorem 1, let Z be the n × n matrix for
which ZTBZ = In and ZTAZ = Λ = diag(λ1, λ2, . . . , λn), where λ1, λ2, . . . , λn
are the eigenvalues of the pencil (A,B). For simplicity we assume that
λ1 ≤ λ2 ≤ · · · ≤ λn.

Let Y ∈ Y∗ and set Y = ZG for some n× p matrix G. From YTBY = Ip
it follows directly that G is semi-unitary. Hence, we have

YTAY = GTΛ G . (7)

Applying Theorem 3 to Eq. (7) with µi being the eigenvalues of GTΛ G
we get λi ≤ µi for i = 1, . . . , p and thus

p∑
i=1

λi ≤
p∑
i=1

µi . (8)

Since GTΛG is symmetric there exists a spectral decomposition of the
form

QT (GTΛG)Q = diag(µ1, µ2, . . . , µp) , (9)
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where Q is a unitary matrix with columns qi being the eigenvectors of
GTΛG. Further, we have

tr(QT (GTΛG)Q) = tr(QQT (GTΛG)) = tr(GTΛG) =

p∑
i=1

µi , (10)

thus implying from Eqs. (7) and (8) that

p∑
i=1

λi ≤ tr(YTAY) . (11)

By the spectral decomposition theorem equality in Eq. (11) holds if Y =
Zp = [z1, . . . , zp], where the columns zi are the eigenvectors of the pencil
(A,B). The given matrix Zp hence diagonalizes the matrix A from problem
(1) and thus leads to

ZTp AZp = diag(λ1, . . . , λp) . (12)

3. The Trace Minimization Method
The Trace Minimization (TRACEMIN) method [13, 12] attempts to compute
a few of the largest or smallest eigenvalues and the corresponding eigenvec-
tors of the generalized eigenvalue problem (1), where both A and B are
positive-definite. In case A is not positive-definite, problem (1) is replaced
by

(A− νB)x = (λ− ν)Bx , (13)

with ν < λ1 < 0, thus resulting in A− νB being positive-definite.
TRACEMIN is motivated by Theorem 2 and works by treating problem (1)

as the quadratic minimization problem

minimize tr(YTAY)

subject to YTBY = Ip .
(14)

Given Yk as the current approximation to the eigenvectors corresponding
to the p smallest eigenvalues where YT

kBX = Ip and 1 ≤ p � n, the idea is
to compute a correction term ∆k that is chosen as to

minimize tr((Yk −∆k)
TA(Yk −∆k))

subject to YT
kB ∆k = 0 .

(15)
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As a result, Yk −∆k always satisfies

tr((Yk −∆k)
TA(Yk −∆k)) ≤ tr(YT

kAYk) . (16)

Further, the next iterate Yk+1 is formed by B-orthonormalizing Yk − ∆k

and thus, by also enforcing YT
kB∆k = 0 in the minimization problem (15)

it guarantees that

tr(YT
k+1AYk+1) ≤ tr((Yk −∆k)

TA(Yk −∆k)) ≤ tr(YT
kAYk) . (17)

The solution of the minimization problem (15) can be obtained by intro-
ducing Lagrange multipliers to enforce the constraints and by solving the
resulting saddle-point problem(

A BYk

YT
kB 0

)(
∆k

Lk

)
=

(
AYk

0

)
, (18)

where the matrix Lk represents the Lagrange multipliers. This system can be
rewritten as the positive-semidefinite system

(PAP)∆k = PAYk, subject to YT
kB∆k = 0 , (19)

where P is the orthogonal projector onto the space B-orthogonal to Yk and
is defined as P = I − BYk(Y

T
kB2Yk)

−1YT
kB . Eq. (19) is solved by the

conjugate gradient (CG) method. By choosing zero as the initial iterate, the
linear constraint YT

kB∆
(l)
k = 0 is automatically satisfied for any intermediate

∆
(l)
k . In [12], the authors show that the update ∆k is determined by the

exact solution of Eq. (19), where the solution is given by

∆k = Yk −A−1BYk(Y
T
kBA−1BYk)

−1 . (20)

This means that the subspace spanned by Yk − ∆k is the same subspace
spanned by A−1BYk and thus, if Eq. (19) is solved exactly at each iter-
ation step (which happens when an exact factorization of A is used) the
basic TRACEMIN algorithm in Algorithm 1 is mathematically equivalent to
(block) inverse iteration [1, 4]. Therefore, the basic TRACEMIN algorithm
can be thought of as an inexact inverse iteration, while still preserving global
convergence [12].

Due to the relation of the basic TRACEMIN algorithm with inverse itera-
tion, alongside of its robust global convergence property, basic TRACEMIN
also inherits the linear convergence rate from the inverse iteration method
[4]. Additionally, for problems in which the desired eigenvalues are poorly
separated from the remaining part of the spectrum, basic TRACEMIN con-
verges too slowly. To counter this, TRACEMIN tries to improve the rate of
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convergence by shifting the system shown in Eq. (19). In [13], TRACEMIN
is accelerated using multiple dynamic shifts, where Eq. (19) becomes

(P(A− σk,iB)P)dk,i = PAyk,i, subject to YT
kB dk,i = 0 , 1 ≤ i ≤ s ,

(21)

with dk,i and yk,i being the i-th columns of ∆k and Yk, respectively, and
σk,i being the associated shift at step k. At the beginning of the algorithm,
a single shift is used for all the columns of Yk. As the algorithm moves
closer to convergence, multiple shifts are introduced dynamically and the CG
process is modified to handle possible breakdown. For one, the CG process
is terminated when the error (xk,i−d

(l)
k,i)

TA(xk,i−d
(l)
k,i) increases by a small

factor [13, § 2.4], which helps maintain global convergence in the presence
of shifting.

Algorithm 1. The basic TRACEMIN algorithm.

Choose a block size s ≥ p and an n × s matrix V1 of full rank such that
VT

1 BV1 = Is.
For k = 1, 2, . . . until convergence, do

1. Compute Wk = AVk and the interaction matrix Hk = VT
kWk.

2. Compute the eigenpairs (Xk,Θk) of Hk. The eigenvalues are arranged
in ascending order and the eigenvectors are chosen to be orthogonal.

3. Compute the corresponding Ritz vectors Yk = VkXk.
4. Compute th residuals Rk = AYk −BYkΘk = WkXk −BYkΘk.
5. Test for convergence.
6. Solve the positive-semidefinite linear system (19) approximately via CG

scheme.
7. B-orthonormalize Yk − ∆k into Vk+1 by the Gram-Schmidt process

with reorthogonalization.

End for

4. Characterization of the Trace Minimization
Method as a Quasi-Newton Method

In this section we approach the TRACEMIN method as a quasi-Newton method
by deriving the appropriate correction equation.

Newton’s method is a root-finding algorithm that uses the first few terms of
the Taylor series of a function F close to a suspected root. Given a function
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F : Rn → R, the method uses the the first-order Taylor expansion of F
around xk [9, Theorem 2.1]

F (xk + pk) ≈ F (xk) + pTk ∇F (xk) (22)

and chooses a correction pk such that F (xk + pk) = 0.
As required by the first-order necessary optimality condition [9, Theorem

2.2], a local minimizer x∗ of a function f : Rn → R satisfies ∇f(x∗) = 0,
meaning that x∗ is a root of the function F (x) = ∇f(x). Hence, it is possible
to apply Newton’s method to F (x) in order to find a critical point of the
objective function. This is accomplished by inserting F (xk) = ∇ f(xk) into
Eq. (22) and solving for pk, thus resulting in the Newton step

pk = −Hf (xk)
−1 ∇ f(xk) , (23)

where ∇ f(xk) is the gradient of f at xk and Hf is the Hessian matrix of f
at xk defined as Hf (xk) ≡ ∇2 f(xk). If x is close enough to a local minimizer
x∗ and the Hessian Hf (x) is positive-definite, Newton’s method converges to
the local minimizer with a quadratic rate of convergence [4, § 1.2.2].

Quasi-Newton methods instead calculate the search direction pk by replac-
ing the true Hessian Hf (xk) with an approximation Bk. The quasi-Newton
update is thus defined as

pk = −B−1k ∇ f(xk) . (24)

Since we present here an approach that does not require a detailed knowl-
edge of quasi-Newton schemes, we refer to [9] for more information on the
schemes.

For the TRACEMIN method, the objective function is given by

f : Rn×p∗ → R : Y 7→ tr((YTBY)−1(YTAY)) , (25)

where Rn×p∗ denotes the set of full-rank n× p matrices.
In each iteration, the TRACEMIN method tries to find a correction term

∆k such that

f(Yk −∆k) ≤ f(Yk) , (26)

which is accomplished by additionally requiring that the correction term is
B-orthogonal to Yk. Thus, we require ∆k to satisfy YkB∆k = 0, i.e. ∆k ∈
HYk , where

HYk := {Z ∈ Rn×p : YT
kBZ = 0} . (27)
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A second-order expansion of f around ∆k = 0 gives:

f(Yk + ∆k) = tr(((Yk + ∆k)
TB(Yk + ∆k))

−1(Yk + ∆k)
TA(Yk + ∆k))

= tr((I + (YT
kBYk)

−1(∆T
kB∆))−1(YT

kBYk)
−1(YT

kAYk + 2∆T
kAYk + ∆T

kA∆k))

(∗)
= tr((I− (YT

kBYk)
−1(∆T

kB∆))(YT
kBYk)

−1(YT
kAYk + 2∆T

kAYk + ∆T
kA∆k))

+H.O.T.

= tr((YT
kBYk)

−1(YT
kAYk)) + tr((YT

kBYk)
−1∆T

k 2AYk)

+
1

2
tr((YT

kBYk)
−1∆T

k 2(A∆k −B∆k(Y
T
kBYk)

−1YT
kAYk)) +H.O.T.

(28)

where in (∗) we used the approximation (I + A)−1 =
∑∞

n=0(−1)nA
n [11,

Eq. (187)]. By further introducing P = I − BYk(Y
T
kB2Yk)

−1YT
kB as the

orthogonal projector onto the space B-orthogonal to Yk, and using the inner
product [1, 4]

〈Z1,Z2〉 := tr((YT
kBYk)

−1ZT1 Z2), Z1,Z2 ∈ HYk (29)

we can rewrite Eq. (28) as follows:

f(Y k + ∆k) = f(Yk) + 〈∆k, 2PAY〉+ 1

2
〈∆k, 2P(A∆k −B∆k(Y

T
kBYk)

−1YT
kAYk)〉+H.O.T.

(30)

From Eq. (30) we now identify 2PAY to be the gradient of f at ∆k = 0 and
the operator

Hf : HYk → HYk : ∆k 7→ 2P(A∆k −B∆k(Y
T
kBYk)

−1YT
kAYk) (31)

to be the Hessian of f at ∆k = 0 [1, 4]. The Newton correction equation in
Eq. (23) thus yields the equation

P(A∆k −B∆k(Y
T
kBYk)

−1YT
kAYk) = −PAY . (32)

By substituting the Hessian of f with the approximate Hessian 2PAP, the
correction equation becomes

(PAP)∆k = −PAYk, ∆k ∈ HYk , (33)

which is the same as Eq. (19) solved in the TRACEMIN method [4, § 4.3.2].
Further, since TRACEMIN is only described for positive-definite A, this lin-
ear system is positive-definite for all vectors in HYk , which implies that the
Newton step is well defined.

However, it is important to note that the characterization of TRACEMIN
as a quasi-Newton method does not capture the global convergence theory
which the authors of [13] established for TRACEMIN; we refer to [4] for
further details.
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5. The Jacobi-Davidson Method
The Jacobi-Davidson (JD) method [15, 14] calculates the eigenvectors and
eigenvalues of the pencil (A,B) by constructing a correction, for a given
eigenvector approximation, in a subspace orthogonal to the given approxi-
mation. The correction is chosen orthogonal since we want to expand the
current search space in a profitable and unexplored direction.

The name of the JD method follows from a combination of two principles
[3]. The first principle, i.e., the computation of the correction in a given
subspace is done in a Davidson manner, since Davidson suggested the usage
of other subspaces than Krylov subspaces for the construction of orthonormal
basis vectors. The second principle is based on an approach suggested by
Jacobi, where the idea is to compute orthogonal corrections.

Let u be a non-zero Ritz approximation of an eigenvector x with Ritz value
θ corresponding to the eigenvalue λ associated to x. Then from the Ritz-
Galerkin condition it follows that

r ≡ Au− θBu ⊥ u . (34)

The goal is now to find a correction vector t for u in the space B-orthogonal
to u, such that

A(u + t) = λB(u + t), uTBt = 0 , (35)

and x is a scalar multiple of u + t. Since the correction t is required to be
B-orthogonal to u, it follows that(

I− uuTB

uTBu

)
t = t . (36)

and the correction equation becomes [14](
I− BuuT

uTBu

)
(A− θB)

(
I− uuTB

uTBu

)
t = −r . (37)

Further, Eq. (37) is the same as the augmented correction equation given by
[14, Theorem 3.5](

A− θB Bu
uTB 0

)(
t
ε

)
=

(
−r
0

)
, (38)

where ε is a Lagrange multiplier enforcing the B-orthogonality of t against
u.

One can also try to derive the correction equation in Eq. (37) by exploiting
the fact that the eigenvectors and eigenvalues of the pencil (A,B) can be
identified as the stationary points of the generalized Rayleigh quotient [2]

ρ(x) =
xTAx

xTBx
, ∀x ∈ Rn\{0} . (39)
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For this, we are going to compute the zeros of the function

F (x) = ∇ ρ(x) (40)

with the help of Newton’s method. Hence, the Newton step for finding a
solution to F (x) = 0 is given by

tk = −Hρ(xk)
−1 ∇ ρ(xk) , (41)

where Hρ is the Hessian of ρ defined by [16]

Hρ(x) =
2

xTBx

[(
I− 2

xTBx
BxxT

)
(A− ρ(x)B)

(
I− 2

xTBx
xxTB

)]
(42)

and the gradient of ρ is [16]

∇ ρ(x) = 2
Ax−Bxρ(x)

xTBx
. (43)

Thus, the Newton equation Hρ(xk)tk = −∇ ρ(xk) becomes

(
I− 2

xTkBxk
Bxkx

T
k

)
(A− ρ(xk)B)

(
I− 2

xTkBxk
xkx

T
kB

)
= −(Axk −Bxkρ(xk)) =: −r(xk) .

(44)

It is important to note that the Hessian is singular if x is an eigenvector,
since Hρ(x)x = −F (x) = 0 [2]. If we instead apply the Newton method to
[17]

F (x, λ) :=

(
(A− λB)x
xTBx− 1

)
(45)

we get the Newton step

(
A− λkB Bxk

xTkB 0

)(
tk
εk

)
=

(
−rk
0

)
, (46)

which is nonsingular unless λk is a multiple eigenvalue of the pencil (A,B)
[2].

In case of the JD method, the targeted eigenvalue λk in Eq. (46), which is
not available during the iteration, is replaced by a shift θk [14], thus finally
resembling the augmented correction equation in Eq. (38).
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After having defined a way to calculate an orthogonal correction vector tk
by following Jacobi’s idea, we now apply Davidson’s approach. The consecu-
tive corrections tk are now used to build the search space. The solution tk of
the correction equation (37) is appended to Vk, resulting in Vk+1 = [Vk, tk]
and thus accelerating the convergence by increasing the dimension of the
trial space by one [2].

A block JD, as described in [14, 12], is given in Algorithm 2. The block
JD tries to obtain approximations for s eigenvalues simultaneously. Further,
at every outer iteration the dimension of the subspace Vk is increased by s,
with the maximum dimension of the subspace being m [14, § 9.5].

If Eq. (47) is solved to high-order accuracy, it is reduced to the Rayleigh
quotient iteration with expanding subspaces, and thus converges cubically in
that case [12, § 5.1]. In general, the algorithm’s convergence rate is between
superlinear and cubic [14, § 3].

Algorithm 2. The block Jacobi-Davidson algorithm.

Choose a block size s ≥ p and an n × s matrix V1 of full rank such that
VT

1 BV1 = Is.
For k = 1, 2, . . . until convergence, do

1. Compute Wk = AVk and the interaction matrix Hk = VT
kWk.

2. Compute the eigenpairs (Xk,Θk) of Hk. The eigenvalues are arranged
in ascending order and the eigenvectors are chosen to be orthogonal.

3. Compute the corresponding Ritz vectors Yk = VkXk.
4. Compute th residuals Rk = AYk −BYkΘk = WkXk −BYkΘk.
5. Test for convergence.
6. For 1 ≤ i ≤ s, solve the indefinite system(

A− θk,iB Bxk,i
xTk,iB 0

)(
tk,i
εk,i

)
=

(
−rk,i
0

)
, (47)

where rk,i = Axk,i − θk,iBxk,i is the residual corresponding to the Ritz
pair (xk,i, θk,i).

7. If dim(Vk) ≤ m− s, then

Vk+1 = ModGSB(Vk,∆k) , (48)

else

Vk+1 = ModGSB(Xk,∆k) . (49)

Here, ModGSB stands for the Gram-Schmidt process with reorthogo-
nalization with respect to the B-inner products, i.e. 〈x,y〉 = xTBy.

End for
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6. The Davidson-Type Trace Minimization Algorithm
Block JD’s performance depends on how good the initial guess is and how
efficiently and accurately the inner system (47) is solved. Further, block JD
suffers from the following problems [12, § 5.1]:

1. The Ritz shifting strategy forces the algorithm to converge to eigenval-
ues closest to the Ritz values that are often far away from the desired
eigenvalues at the beginning of the iteration;

2. Due to the subspace expanding, the Ritz values are decreasing and the
algorithm is forced to converge to the smallest eigenpairs;

3. If a Ritz value approaches a multiple eigenvalue or a cluster of eigen-
values, the inner system (47) becomes poorly conditioned.

In [12], Sameh and Tong present the Davidson-type trace minimization al-
gorithm that partially solves the above mentioned problems by employing the
techniques developed in the TRACEMIN method, i.e., the multiple dynamic
shifting strategy [12, § 4.2], the implicit deflation technique, where dk,i is
required to be B-orthogonal to all the Ritz vectors obtained in the previous
iteration step (which is essential in the original TRACEMIN algorithm for
maintaining the trace reduction property (17)), and the dynamic stopping
strategy [12, § 4.3].

Let s ≥ p be the block size and let m ≥ s be a given integer that limits
the dimension of the subspaces. The Davidson-type TRACEMIN algorithm is
given as follows:

Algorithm 3. The Davidson-type trace minimization algorithm.

Choose a block size s ≥ p and an n × s matrix V1 of full rank such that
VT

1 BV1 = Is.
For k = 1, 2, . . . until convergence, do

1. Compute Wk = AVk and the interaction matrix Hk = VT
kWk.

2. Compute the eigenpairs (Xk,Θk) of Hk. The eigenvalues are arranged
in ascending order and the eigenvectors are chosen to be orthogonal.

3. Compute the corresponding Ritz vectors Yk = VkXk.
4. Compute th residuals Rk = AYk −BYkΘk = WkXk −BYkΘk.
5. Test for convergence.
6. For 1 ≤ i ≤ s, solve the indefinite system

(P(A− σk,iB)P)dk,i = Prk,i, YT
kB dk,i = 0 (50)

to a certain accuracy determined by the stopping criterion described
in [12, § 4.3]. The shift parameters σk,i, 1 ≤ i ≤ s, are determined
according to the dynamic shifting strategy described in [12, § 4.2].
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7. If dim(Vk) ≤ m− s, then

Vk+1 = ModGSB(Vk,∆k) , (51)

else

Vk+1 = ModGSB(Xk,∆k) . (52)

End for

In [12, § 5.3], both the block JD and the Davidson-type TRACEMIN algo-
rithm are compared by doing numerical experiments on a variety of prob-
lems. From the results it is observed that the difference between both algo-
rithms becomes clear when the number of inner iteration steps is increased,
in which case the Davidson-type TRACEMIN algorithm needs fewer outer it-
eration steps for most of the solved problems. This behavior comes from the
dynamic shifting strategy deployed by the Davidson-type TRACEMIN algo-
rithm, which accelerates the algorithm significantly. It is also observed that
block JD converges to wrong eigenpairs when the inner systems are solved
to high accuracy. If the inner systems are solved crudely, both algorithms ac-
tually perform the same. Further, it is observed that the success of the block
JD method depends on good starting spaces.

7. Conclusion
The goal of this thesis was to derive and compare a number of algorithms
for computing a few eigenvalues and associated eigenvectors of the general-
ized eigenvalue problem. Since the trace theorem is an important ingredient
for the trace minimization method, we provided a detailed proof of the the-
orem. Further, the trace minimization method has been derived and in a
next step characterized as a quasi-Newton method without involving any
differential geometry in our description. Relations between some of the al-
gorithms have been elaborated, showing that the trace minimization method
and Jacobi-Davidson method, albeit starting with different derivations are
algorithmically still quite similar.

The Jacobi-Davidson method for the generalized eigenvalue problem has
been derived using two approaches: a) by starting from the Ritz-Galerkin
condition and; b) by deriving a Newton step from a suitable function F (x, λ).
Furthermore, a block-version of the Jacobi-Davidson algorithm has been pro-
vided.

Finally, after having analyzed the trace minimization method and Jacobi-
Davidson method, we have supplied a description of the Davidson-type trace
minimization method, which combines techniques developed in the trace
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minimization method and Davidson’s approach of expanding subspaces, re-
sulting in a rather robust method in regard to some problems compared to
the block Jacobi-Davidson method.
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