Term Project Presentation

A Comparison of Algorithms Related to Trace Minimization to Compute a
Small Number of Eigenvalues of a Real Symmetric Matrix

Giuseppe Accaputo, 27.01.2017

Giuseppe Accaputo  27.01.2017 1



Outline

e Tasks
e Trace Theorem and a Proof
e Trace Minimization Method

Trace Minimization Method as a Quasi-Newton Method

Jacobi-Davidson / Newton with Subspace Acceleration

Davidson-Type Trace Minimization Method

Conclusion

Giuseppe Accaputo 27.01.2017 2



Tasks

1. Detailed formulation of the problem, including proof of the trace
theorem

2. Formulation of the trace minimization method as a Newton method

3. Derive TraceMin and Jacobi-Davidson algorithms and compare them
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Problem Description

Compute a few of the smalles eigenvalues or eigenvectors of the large,
sparse, generalized eigenvalue problem

Az = \Bx (1)

where x € R", A € Rand A, B are n X n symmetric matrices, with B
being positive-definite.

e The matrix A — AB is called a matrix pencil
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Theorem 1 [5]

Let A and B be symmetric n x n matrices. If B is positive-definite then
there is an n x n matrix Z for which

ZT'TBZ =1, and ZTAZ = A =diag(\i,)2,...,\), (2

where A1, Ag, ..., A\, are the eigenvalues of the pencil (A, B) from prob-
lem (1) and the columns of Z are their associated eigenvectors. Further-
more, if A is positive-definite, then all of the eigenvalues \; are positive.
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Theorem 2: The Trace Theorem [8]

Let A and B be given as in Theorem 1 and Y* be the setof all n x p
matrices Y for which YT BY = I,. Then

in tr(YTAY) =
Join r( ) ;)\ 3)
In other words,
min tr(YZAY) = tr(XTAX) (4)
Yey+
with
XTBX =1, and XTAX = diag(A, Mg, ..., \p), (5)

where X corresponds to the first p columns of the matrix Z of Theorem 1.
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Proof of the Trace Theorem (1/6)
Theorem 3 (Poincaré Separation Theorem [4, 6])

Let A be a real symmetric n x n matrix with eigenvalues \; < Ay <
... < A\p, and let G be a semi-unitary n x k£ matrix (1 < k£ < n), so that
GTG = I}. Then the eigenvalues ;11 < o < ... < uy, of GT AG satisfy

ANi <pi < Mok (=1,2,... k). (6)
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Proof of the Trace Theorem (2/6)

Let A and B given as in Theorem 1, i.e., Z € R™*" is the matrix for which
ZT'BZ = I, and ZTAZ = diag(\1, Mo, ..., \n), where Ai, do, ..., A\,
are the eigenvalues of the pencil (A, B).

LetY € Y*andsetY = ZG forsome G ¢ R"*?. Y'BY =1, — G
is unitary and

YTAY = GTAG. (7)
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Proof of the Trace Theorem (3/6)

From Theorem 3, for the eigenvalues p; of GT A G it follows that \; < 75
fori =1,...,pandthus

P
ZMSZM- 8)
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Proof of the Trace Theorem (4/6)

GTAG is symmetric = there exists a spectral decomposition [10,
Theorem 4.33] of the form

QT (GTAG) Q = diag(p, 12 - -, ip) (9)

where @ is a unitary matrix with columns g, being the eigenvectors of
GTAG.
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Proof of the Trace Theorem (5/6)

Consider the trace of the spectral decomposition in Eq. (9):

p
tr(QT(GTAG) Q) = tr(QQT(GTAG)) = tr(GTAG) => ;. (10)
i=1
From Egs. (7), (8) and (10) it follows that
ij N <tr(YTAY). (11)

i=1
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Proof of the Trace Theorem (6/6)

By the the spectral decomposition [10, Theorem 4.33] equality holds if
Y =Z, = [z1,..., 2|, where the columns z; are the eigenvectors of the
pencil (A, B).

Z, hence diagonalizes the matrix A from problem (1) and thus leads to

ZIAZ, = diag(\, ..., \p) .
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The Trace Minimization Method [8, 7]

Trace Minimization (TRACEMIN): Use trace theorem (Theorem 2) and
treat problem (1) as the quadratic minimization problem

minimize tr(YTAY)

(12)
subjectto Y'BY =1,.
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The Trace Minimization Method [8, 7]

Idea is to compute a correction term A that is chosen as to

minimize tr((Yy — Ap)TA(Y ) — Ay))
subjectto Y/ BA, =0.
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The Trace Minimization Method [8, 7]

Next iterate Y1 is formed by B-orthonormalizing Y, — Aj. By also

enforcing YfBAk = 0 in the minimization problem (13) it guarantees
that

tr(Yi 1 AY p1) < tr((Yi — Ap)TA(Y . — Ap)) < tr(YLAY).
(14)
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The Trace Minimization Method [8, 7]

Solution of the minimization problem (13) can be obtained by solving the
saddle-point problem

A BYk Ak . AYk
(e 7 ) (2)- () o

where L, represents the Lagrange multipliers
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The Trace Minimization Method [8, 7]

The saddle-point problem is further reduced to the following positive-
semidefinite system

(PAP)A, = PAY, YIBA,=0 (16)
where
P=I-BY,(YIBYY,)'Y]B (17)

is the orthogonal projector onto the space B-orthogonal to Y, which
guarantees that Y. BA, = 0.
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The Trace Minimization Method [8, 7]

If the projected system in Eq. (16) is solved exactly at each iteration step,
TRACEMIN is mathematically equiv. to inverse iteration.

¢ Inherits robust global convergence property
e Also inherits linear convergence rate

— TRACEMIN can be accelerated by using shifting strategies
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Trace Minimization Method as a Quasi-Newton Method

Newton’s method: Solve

F(x)=0. (18)
Newton step: Use F'(x) = grad f(x), then:
p, = — Hessy(xy) " grad f(zy) . (19)

Quasi-Newton step:

pp = —B; ' grad f(zy), (20)

with By, being an approximation of the true Hessian Hess ¢(xy).
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Trace Minimization Method as a Quasi-Newton Method

TRACEMIN’s objective function is given by
f:R™ L5 R:Y —»tr(YTBY) Y(YTAY)), (21)

where R} P denotes the set of full-rank n x p matrices.
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Trace Minimization Method as a Quasi-Newton Method

A second-order expansion of f around Ay = 0 gives:

FY e+ Ay) =tr(Y{BY ) H(Y]AY}))
+tr((YEBY ) 'AT2AY ) (22)

1
+5 tr(YIBY ) 'AT2(A4,
— BAL(YIBY ) 'YTAY},)) + HO.T.
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Trace Minimization Method as a Quasi-Newton Method

Introduce P = I — BY (Y} B2Y;)"'Y} B as the orthogonal projector
onto the space B-orthogonalto Y,

Further, introduce the inner product [1, 3]

(Z1,2Z5) = tr(YIBY ) ‘21 2,), Z,,Z, B-orthogonalto Y.
(23)
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Trace Minimization Method as a Quasi-Newton Method

Now rewrite second-order expansion as

1
F(¥k+ Ap) = f(¥Yi) + (A, 2PAY) + 5 (Ag, 2P(AAy, (24)
— BAL(YIBY ) 'YTAY,)) + HO.T.

Identify 2P AY to be the gradient of f at A, = 0 and the operator
Hesss : A +— 2P(AA; — BAL(YIBY ) 'Y} AY) (25)

to be the Hessian of f at Ay = 0[1, 3]
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Trace Minimization Method as a Quasi-Newton Method

Newton correction equation now becomes

P(AA, — BAL(YIBY ) 'Y]AY,) = —PAY . (26)

Substitute the Hessian of f with the approximate Hessian 2P AP and the
correction equation becomes

PAP)A,=—-PAY, Y!BA,=0, (27)
k

which is the same as Eq. (16) solved in the TRACEMIN method [3, §
4.3.2].
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Trace Minimization Method as a Quasi-Newton Method

Important to mention: further calculations needed to capture TRACEMIN'’s
global convergence theory; see [3, § 4.3.2] for further details.

Nonetheless, TRACEMIN can be described as inexact, quasi-Newton
method.

e Method yields linear (instead of quadratic) convergence rate due to
the usage of approx. Hessian

e Authors of TRACEMIN knew this result due to relationship between
TRACEMIN and inverse iteration
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Trace Minimization Method as a Quasi-Newton Method

In [1], the authors present a two-phase algorithm using a Riemannian
trust-region algorithm:

1. Use basic TRACEMIN far away from solution, i.e. use approximate
Hessian

2. When a switching criterion is satisfied (i.e. algorithm is close to
solution), continue calculations with exact Hessian

Result: superlinear convergence.

Giuseppe Accaputo 27.01.2017 26



Jacobi-Davidson [9, 2]

The Jacobi-Davidson (JD) method calculates the eigenvectors and eigen-
values of the pencil (A, B) by constructing a correction, for a given eigen-
vector approximation, in a subspace orthogonal to the given approxima-
tion.

Name follows from two basic principles:
1. Jacobi’s idea: compute orthogonal corrections

2. Davidson approach: Computation of the correction in a given sub-
space different from Krylov subspaces
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Jacobi-Davidson: Newton with Subspace Acceleration [9, 2]

Derive a Newton update from the generalized Rayleigh quotient

T
' Ax

= —= R™\{0}. 28
The Newton equation Hess,(xx)t; = — grad p(x;) becomes

2 2
I—-———B YA - B)| I — ——— B
( T By $k$k> (A — p(xy)B) ( +TBay LTy ) (29)

= — (A=), — Bzip(zy)).

Problem: Hessian is always singular when « is an eigenvector, because
then Hess,(z)x = —F(x) = 0[2]
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Jacobi-Davidson: Newton with Subspace Acceleration [9, 2]

Apply the Newton method instead to

zT'Bx — 1

F(z, \) = ( (4 -AB)z ) . (30)

New Newton step:

A-\B B t -
i k Tk ko) _ Tk ’ (31)
z;, B 0 €k 0
Note: Is only singular if (x, A) is an eigenpair of the pencil (A, B) with
A, being a multiple eigenvalue [2]
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Jacobi-Davidson: Newton with Subspace Acceleration [9, 2]

Davidson’s approach: consecutive corrections ¢, are now used to build
the search space.

e Solution t;, of the Jacobian correction equation is appended to Vi,
resulting in Vi1 = [V, tk]

e Speeds up convergence by increasing dimension of trial space by
one

Block JD approx. [ eigenvalues simultaneously. Further, the trial space
dimension is increased by .
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Davidson-Type Trace Minimization Method [7]
Problems of block JD:

1. Shifting strategy forces algorithm to converge to eigenvalues clos-
est to Ritz values (often far away from desired eigenvalues at the
beginning)

2. Subspace expanding decreases Ritz values; block JD is forced to
converge to smalles eigenpairs

3. lll-conditioning when Ritz value approaches multiple eigenvalue or
cluster of eigenvalues
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Davidson-Type Trace Minimization Method [7]

Solution:
1. Use multiple dynamic shifting strategy
2. Use implicit deflation technique (YTBdk,i =0)

3. Use dynamic stopping strategy for accuracy when solving inner
system
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Conclusion

e Proof of trace theorem using Poincaré separation theorem

e Trace minimization characterization as quasi-Newton more difficult
than expected (requires background in differential geometry)

e Block JD and TRACEMIN are quite similar

e Although JD has better convergence rate in some cases, it still
depends on a good starting subspace

— Davidson-type TRACEMIN is not affected; is more robust
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