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Tasks

1. Detailed formulation of the problem, including proof of the trace

theorem

2. Formulation of the trace minimization method as a Newton method

3. Derive TraceMin and Jacobi-Davidson algorithms and compare them
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Problem Description

Compute a few of the smalles eigenvalues or eigenvectors of the large,

sparse, generalized eigenvalue problem

Ax = λBx , (1)

where x ∈ R
n, λ ∈ R and A, B are n × n symmetric matrices, with B

being positive-definite.

• The matrix A − λB is called a matrix pencil
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Theorem 1 [5]

Let A and B be symmetric n × n matrices. If B is positive-definite then

there is an n × n matrix Z for which

ZT BZ = In and ZT AZ = Λ = diag(λ1, λ2, . . . , λn) , (2)

where λ1, λ2, . . . , λn are the eigenvalues of the pencil (A, B) from prob-

lem (1) and the columns of Z are their associated eigenvectors. Further-

more, if A is positive-definite, then all of the eigenvalues λi are positive.
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Theorem 2: The Trace Theorem [8]

Let A and B be given as in Theorem 1 and Y∗ be the set of all n × p

matrices Y for which Y T BY = Ip. Then

min
Y ∈Y∗

tr(Y T AY ) =
p
∑

i=1

λi . (3)

In other words,

min
Y ∈Y∗

tr(Y T AY ) = tr(XT AX) (4)

with

XT BX = Ip and XT AX = diag(λ1, λ2, . . . , λp) , (5)

where X corresponds to the first p columns of the matrix Z of Theorem 1.
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Proof of the Trace Theorem (1/6)

Theorem 3 (Poincaré Separation Theorem [4, 6])

Let A be a real symmetric n × n matrix with eigenvalues λ1 ≤ λ2 ≤

. . . ≤ λn, and let G be a semi-unitary n × k matrix (1 ≤ k ≤ n), so that

GT G = Ik. Then the eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µk of GT AG satisfy

λi ≤ µi ≤ λn−k+i (i = 1, 2, . . . , k) . (6)
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Proof of the Trace Theorem (2/6)

Let A and B given as in Theorem 1, i.e., Z ∈ R
n×n is the matrix for which

ZT BZ = In and ZT AZ = diag(λ1, λ2, . . . , λn), where λ1, λ2, . . . , λn

are the eigenvalues of the pencil (A, B).

Let Y ∈ Y∗ and set Y = ZG for some G ∈ R
n×p. Y T BY = Ip =⇒ G

is unitary and

Y T AY = GT
Λ G . (7)
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Proof of the Trace Theorem (3/6)

From Theorem 3, for the eigenvalues µi of GT
Λ G it follows that λi ≤ µi

for i = 1, . . . , p and thus

p
∑

i=1

λi ≤
p
∑

i=1

µi . (8)
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Proof of the Trace Theorem (4/6)

GT
ΛG is symmetric =⇒ there exists a spectral decomposition [10,

Theorem 4.33] of the form

QT (GT
ΛG) Q = diag(µ1, µ2, . . . , µp) , (9)

where Q is a unitary matrix with columns qi being the eigenvectors of

GT
ΛG.
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Proof of the Trace Theorem (5/6)

Consider the trace of the spectral decomposition in Eq. (9):

tr(QT (GT
ΛG) Q) = tr(QQT (GT

ΛG)) = tr(GT
ΛG) =

p
∑

i=1

µi . (10)

From Eqs. (7), (8) and (10) it follows that

p
∑

i=1

λi ≤ tr(Y T AY ) . (11)
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Proof of the Trace Theorem (6/6)

By the the spectral decomposition [10, Theorem 4.33] equality holds if

Y = Zp = [z1, . . . , zp], where the columns zi are the eigenvectors of the

pencil (A, B).

Zp hence diagonalizes the matrix A from problem (1) and thus leads to

ZT
p AZp = diag(λ1, . . . , λp) .
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The Trace Minimization Method [8, 7]

Trace Minimization (TRACEMIN): Use trace theorem (Theorem 2) and

treat problem (1) as the quadratic minimization problem

minimize tr(Y T AY )

subject to Y T BY = Ip .
(12)
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The Trace Minimization Method [8, 7]

Idea is to compute a correction term ∆k that is chosen as to

minimize tr((Y k − ∆k)T A(Y k − ∆k))

subject to Y T
k B ∆k = 0 .

(13)
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The Trace Minimization Method [8, 7]

Next iterate Y k+1 is formed by B-orthonormalizing Y k − ∆k. By also

enforcing Y T
k B∆k = 0 in the minimization problem (13) it guarantees

that

tr(Y T
k+1AY k+1) ≤ tr((Y k − ∆k)T A(Y k − ∆k)) ≤ tr(Y T

k AY k) .

(14)
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The Trace Minimization Method [8, 7]

Solution of the minimization problem (13) can be obtained by solving the

saddle-point problem

(

A BY k

Y T
k B 0

)(

∆k

Lk

)

=

(

AY k

0

)

(15)

where Lk represents the Lagrange multipliers
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The Trace Minimization Method [8, 7]

The saddle-point problem is further reduced to the following positive-

semidefinite system

(P AP )∆k = P AY k, Y T
k B∆k = 0 (16)

where

P = I − BY k(Y T
k B2Y k)−1Y T

k B (17)

is the orthogonal projector onto the space B-orthogonal to Y k, which

guarantees that Y T
k B∆k = 0.
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The Trace Minimization Method [8, 7]

If the projected system in Eq. (16) is solved exactly at each iteration step,

TRACEMIN is mathematically equiv. to inverse iteration.

• Inherits robust global convergence property

• Also inherits linear convergence rate

– TRACEMIN can be accelerated by using shifting strategies
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Trace Minimization Method as a Quasi-Newton Method

Newton’s method: Solve

F (x) = 0 . (18)

Newton step: Use F (x) = grad f(x), then:

pk = − Hessf (xk)−1 grad f(xk) . (19)

Quasi-Newton step:

pk = −B−1

k grad f(xk) , (20)

with Bk being an approximation of the true Hessian Hessf (xk).
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Trace Minimization Method as a Quasi-Newton Method

TRACEMIN’s objective function is given by

f : Rn×p
∗ → R : Y 7→ tr((Y T BY )−1(Y T AY )) , (21)

where R
n×p
∗ denotes the set of full-rank n × p matrices.
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Trace Minimization Method as a Quasi-Newton Method

A second-order expansion of f around ∆k = 0 gives:

(22)

f(Y k + ∆k) = tr((Y T
k BY k)−1(Y T

k AY k))

+ tr((Y T
k BY k)−1

∆
T
k 2AY k)

+
1

2
tr((Y T

k BY k)−1
∆

T
k 2(A∆k

− B∆k(Y T
k BY k)−1Y T

k AY k)) + H.O.T.
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Trace Minimization Method as a Quasi-Newton Method

Introduce P = I − BY k(Y T
k B2Y k)−1Y T

k B as the orthogonal projector

onto the space B-orthogonal to Y k

Further, introduce the inner product [1, 3]

〈Z1, Z2〉 := tr((Y T
k BY k)−1ZT

1 Z2), Z1, Z2 B-orthogonal to Y k .

(23)
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Trace Minimization Method as a Quasi-Newton Method

Now rewrite second-order expansion as

(24)f(Y k + ∆k) = f(Y k) + 〈∆k, 2P AY 〉 +
1

2
〈∆k, 2P (A∆k

− B∆k(Y T
k BY k)−1Y T

k AY k)〉 + H.O.T.

Identify 2P AY to be the gradient of f at ∆k = 0 and the operator

Hessf : ∆k 7→ 2P (A∆k − B∆k(Y T
k BY k)−1Y T

k AY k) (25)

to be the Hessian of f at ∆k = 0 [1, 3]
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Trace Minimization Method as a Quasi-Newton Method

Newton correction equation now becomes

P (A∆k − B∆k(Y T
k BY k)−1Y T

k AY k) = −P AY . (26)

Substitute the Hessian of f with the approximate Hessian 2P AP and the

correction equation becomes

(P AP )∆k = −P AY , Y T
k B∆k = 0 , (27)

which is the same as Eq. (16) solved in the TRACEMIN method [3, §

4.3.2].
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Trace Minimization Method as a Quasi-Newton Method

Important to mention: further calculations needed to capture TRACEMIN’s

global convergence theory; see [3, § 4.3.2] for further details.

Nonetheless, TRACEMIN can be described as inexact, quasi-Newton

method.

• Method yields linear (instead of quadratic) convergence rate due to

the usage of approx. Hessian

• Authors of TRACEMIN knew this result due to relationship between

TRACEMIN and inverse iteration
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Trace Minimization Method as a Quasi-Newton Method

In [1], the authors present a two-phase algorithm using a Riemannian

trust-region algorithm:

1. Use basic TRACEMIN far away from solution, i.e. use approximate

Hessian

2. When a switching criterion is satisfied (i.e. algorithm is close to

solution), continue calculations with exact Hessian

Result: superlinear convergence.
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Jacobi-Davidson [9, 2]

The Jacobi-Davidson (JD) method calculates the eigenvectors and eigen-

values of the pencil (A, B) by constructing a correction, for a given eigen-

vector approximation, in a subspace orthogonal to the given approxima-

tion.

Name follows from two basic principles:

1. Jacobi’s idea: compute orthogonal corrections

2. Davidson approach: Computation of the correction in a given sub-

space different from Krylov subspaces
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Jacobi-Davidson: Newton with Subspace Acceleration [9, 2]

Derive a Newton update from the generalized Rayleigh quotient

ρ(x) =
xT Ax

xT Bx
, ∀x ∈ R

n\{0} . (28)

The Newton equation Hessρ(xk)tk = − grad ρ(xk) becomes

(

I −
2

xT
k Bxk

BxkxT
k

)

(A − ρ(xk)B)

(

I −
2

xT
k Bxk

xkxT
k B

)

= −(Axk − Bxkρ(xk)).

(29)

Problem: Hessian is always singular when x is an eigenvector, because

then Hessρ(x)x = −F (x) = 0 [2]
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Jacobi-Davidson: Newton with Subspace Acceleration [9, 2]

Apply the Newton method instead to

F (x, λ) :=

(

(A − λB)x

xT Bx − 1

)

. (30)

New Newton step:

(

A − λkB Bxk

xT
k B 0

)(

tk

ǫk

)

=

(

−rk

0

)

, (31)

Note: Is only singular if (xk, λk) is an eigenpair of the pencil (A, B) with

λk being a multiple eigenvalue [2]
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Jacobi-Davidson: Newton with Subspace Acceleration [9, 2]

Davidson’s approach: consecutive corrections tk are now used to build

the search space.

• Solution tk of the Jacobian correction equation is appended to V k,

resulting in V k+1 = [V k, tk]

• Speeds up convergence by increasing dimension of trial space by

one

Block JD approx. l eigenvalues simultaneously. Further, the trial space

dimension is increased by l.
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Davidson-Type Trace Minimization Method [7]

Problems of block JD:

1. Shifting strategy forces algorithm to converge to eigenvalues clos-

est to Ritz values (often far away from desired eigenvalues at the

beginning)

2. Subspace expanding decreases Ritz values; block JD is forced to

converge to smalles eigenpairs

3. Ill-conditioning when Ritz value approaches multiple eigenvalue or

cluster of eigenvalues
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Davidson-Type Trace Minimization Method [7]

Solution:

1. Use multiple dynamic shifting strategy

2. Use implicit deflation technique (Y T Bdk,i = 0)

3. Use dynamic stopping strategy for accuracy when solving inner

system
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Conclusion

• Proof of trace theorem using Poincaré separation theorem

• Trace minimization characterization as quasi-Newton more difficult

than expected (requires background in differential geometry)

• Block JD and TRACEMIN are quite similar

• Although JD has better convergence rate in some cases, it still

depends on a good starting subspace

– Davidson-type TRACEMIN is not affected; is more robust
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