

Master Thesis Presentation

Solving Large Scale Eigenvalue Problems in Amorphous Materials

Giuseppe Accaputo, 07.09.2017

ETH zürich

Outline

- Introduction
- Goal
- Approaches
- Implementation and Parallelization
- Experimental Results
- Conclusion

Introduction: Amorphous Solids

Bulk metallic glasses (BMG) exhibit a variety of vibrational properties resulting from significant atomic scale disorder.

- Crystalline solids: vibrations are simply plane waves
- Amorphous solids: majority of vibrations are not plane waves
 - Propagative modes (e.g. plane waves) restricted to low frequency domain
 - Localized modes occupying high frequency tail
- Precise nature of these low frequency modes and how they are influenced by local atomic structure remains unclear

Introduction: Amorphous Solids

- Boson peak: existence of extra vibrational modes in amorphous solids
 - Considered to be one of the universal properties of glasses
 - Origin of the Boson peak is still debated
 - Boson peak is observed within a frequency interval
- Molecular dynamics simulations can produce atomistic BMG structures in which the equilibrium position of each atom is known
 - Generate and analyze Hessian matrix *H* containing second derivatives of the potential *V* at equilibrium geometry

EHzürich

Goal

• The following eigenproblem is given:

$$\boldsymbol{H}\boldsymbol{u}_j = \lambda_j \boldsymbol{u}_j \,, \quad j = 1, 2, \dots, 3N \tag{1}$$

- u_j are normal modes, i.e. displacements in case of Eq. (1)

-
$$\lambda_j = \omega_j^2$$
, where ω_j are the fundamental frequencies

- Compute the eigenmodes in a low frequency region containing the Boson peak by diagonalizing *H*
- Challenge: Region of interest is in the interior of the spectrum of H

Previous Approach

- Sander Schaffner: "Using Trilinos to Solve Large Scale Eigenvalue Problems in Amorphous Materials" (2015)
- Advance into region of interest by computing a sufficiently large number of eigenvalues at the beginning of the spectrum
- **Problem**: for large matrices, too many eigenvalues and corresponding eigenvectors have to be calculated

New Approach: Interval-Specific Eigenvalue Computation

Goal: Efficient computation of eigenvalues in a specified interval of the spectrum of the matrix H

- By specifying the interval of interest [ξ, η] ⊆ [λ_{min}, λ_{max}] as the region containing the Boson peak, compute all the eigenvalues λ ∈ [ξ, η] of *H*.
 - $\lambda_{\min}, \lambda_{\max}$ are the extremal eigenvalues of $oldsymbol{H}$
- Eigenvalues outside of the interval $[\xi,\eta]$ should be discarded to save computational time

Tools

- Polynomial filter, for filtering eigenvalues within a given interval of interest
- Iterative method for the computation of the eigenvalues of interest

Li, Ruipeng, et al. "A Thick-Restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems." *SIAM Journal on Scientific Computing* 38.4 (2016): A2512-A2534. [2]

Polynomial Filtering: Goal

Polynomial Filtering: Least-Squares Polynomial Filter [2]

Approximate the Dirac delta function $\delta_{\gamma}=\delta(t-\gamma)$ centered at γ by

$$\rho_k(t) = \sum_{j=0}^k \mu_j T_j(t), \quad \text{with } \mu_j = \begin{cases} 1/2 & \text{if } j = 0\\ \cos(j \, \cos^{-1}(\gamma)) & \text{otherwise} \end{cases}$$
(2)

• $T_j(t)$ is the Chebyshev polynomial of the first kind of degree j

$$T_0(t) = 1 \tag{3}$$

$$T_1(t) = t \tag{4}$$

$$T_j(t) = 2 \ t \ T_{j-1}(t) - T_{j-2}(t).$$
 (5)

• $\hat{\rho}_k(t) = \rho_k(t) / \rho_k(\gamma)$ is an optimal filter [2]

Polynomial Filtering: Transformation

Chebyshev polynomials T_j are defined on the interval [-1, 1]. We want to apply the filter $\hat{\rho}_k$ on H. Transform the eigenvalues of our matrix H:

$$c = (\lambda_{\max} + \lambda_{\min})/2$$
 (6)

$$d = (\lambda_{\max} - \lambda_{\min})/2 \tag{7}$$

$$\hat{\boldsymbol{H}} = (\boldsymbol{H} - c\,\boldsymbol{I})/d$$
 (8)

- All the eigenvalues $\hat{\lambda}$ of \hat{H} are in [-1,1]; $\hat{\rho}_k(\hat{H})$ can be evaluated
- Boundaries of interval of interest are also transformed:

$$\hat{\xi} = (\xi - c)/d \tag{9}$$

$$\hat{\eta} = (\eta - c)/d \tag{10}$$

Polynomial Filtering: Smoothing Approaches

- Expansions of discontinuous functions lead to oscillations near the discontinuities known as *Gibbs oscillations*
- Smoothing multipliers are added such that Eq. (2) actually is replaced by

$$\rho_k(t) = \sum_{j=0}^k g_j^k \mu_j T_j(t)$$
(11)

• Jackson and Lanczos smoothing available

Polynomial Filtering: Smoothing Approaches

Figure 2: Filter polynomial $\hat{\rho}_k$ using different smoothing approaches.

Polynomial Filtering: Determining the Optimal Degree

- 1. Start from low degree (e.g. k = 2)
- 2. Increase degree until both boundary values become small enough, i.e.

$$\hat{
ho}_k(\hat{\xi}) < \phi$$
 and $\hat{
ho}_k(\hat{\eta}) < \phi$, (12)

where ϕ is a specified threshold

- Most of the times: $\hat{\rho}_k(\hat{\xi}) \neq \hat{\rho}_k(\hat{\eta})$
 - Unfavorable for selection of eigenvalues

Polynomial Filtering: Determining the Optimal Degree

Figure 3: Jackson-smoothed filter polynomials $\hat{\rho}_k$.

EHzürich

Polynomial Filtering: Balancing the Filter

- To facilitate selection of eigenvalues it's preferable to have $\hat{\rho}_k(\hat{\xi}) = \hat{\rho}_k(\hat{\eta})$
- Move center γ such that $\hat{\rho}_k(\hat{\xi}) = \hat{\rho}_k(\hat{\eta})$ and define a bar value τ with $\hat{\rho}_k(\hat{\xi}) = \hat{\rho}_k(\hat{\eta}) = \tau$
- Using τ determine if an eigenvalue λ is inside or outside of the interval of interest [ξ, η]:

$$\lambda \in [\xi, \eta] \iff \hat{\rho}_k(\hat{\lambda}) \ge \tau \text{ and } \lambda \notin [\xi, \eta] \iff \hat{\rho}_k(\hat{\lambda}) < \tau$$
 (13)

Polynomial Filtering: Balancing the Filter

Figure 4: Balanced Jackson-smoothed filter polynomials $\hat{\rho}_k$.

Polynomial Filtering: Balancing the Filter

Figure 5: Jackson-smoothed Filter polynomial $\hat{\rho}_k$ for end intervals.

- $\lambda_{\min} = 0, \lambda_{\max} = 8$
- $\sigma = \{\lambda_{\min}, 2, 2.3, 2.6, 3, 3.4, 6.1, 6.4, 7.1, 7.5, 7.7, \lambda_{\max}\}$
- Jackson smoothing is applied

Eigenvalue Computation

Once we have defined the filter polynomial $\hat{\rho}_k$, we can apply it to our transformed matrix \hat{H} to get $\hat{\rho}_k(\hat{H})$

- The eigenvalues of $\hat{\rho}_k(\hat{H})$ are $\theta_1 = \hat{\rho}_k(\hat{\lambda}_1), \dots, \theta_l = \hat{\rho}_k(\hat{\lambda}_l)$, with $\hat{\lambda}_i$ being the eigenvalues of \hat{H}
- Apply the thick-restarted Lanczos algorithm to get the eigenpairs (θ_i, u_i) for the few largest eigenvalues of $\hat{\rho}_k(\hat{H})$
- If $\theta_i \geq \tau$, check if $\tilde{\lambda}_i = \boldsymbol{u}_i^T \boldsymbol{H} \boldsymbol{u}_i \in [\xi, \eta]$
 - $\theta_i \ge \tau$ is only used as a preselection tool
 - Eigenpairs (θ_i, u_i) with $\theta_i < \tau$ are discarded

Eigenvalue Computation: Visual Example

Eigenvalue Count Estimation

- The size of the Krylov basis to be computed by the eigensolver depends on the number of eigenvalues we need
- The estimation of the number of eigenvalues μ_[ξ,η] in a given interval [ξ, η] is based on an approximation of the trace of an eigenprojector [1]:

$$\mu_{[\xi,\eta]} = \operatorname{tr}(\boldsymbol{P}) \approx \frac{n}{n_v} \sum_{k=1}^{n_v} \left[\sum_{j=0}^M \nu_j \boldsymbol{v}_k^T \boldsymbol{T}_j(\boldsymbol{A}) \boldsymbol{v}_k \right], \quad (14)$$

- Works very well for well-separated eigenvalues in $[\xi, \eta]$
- Runs into issues if spectrum contains clusters (also dependent on the separation of the eigenvalues)

EHzürich

Implementation and Parallelization

- Implementation based on C++11 and Trilinos
- Trilinos supports distributed-memory parallel computations through the Message Passing Interface (MPI)
- Row-wise distribution of the data: each MPI rank gets a contiguous and unique set of rows

Parallelization: Distribution Pattern

Figure 11: Distribution pattern of a matrix $H \in R^{6 \times 6}$ using 3 MPI ranks. Rank 1 gets rows i = 0, 1, rank 2 gets rows i = 2, 3, and rank 3 gets rows i = 4, 5

Polynomial Filter Operator $\hat{\rho}_k(\hat{H})$

• During each Lanczos iteration the product $\hat{\rho}_k(\hat{H})X$ is computed, where $X \in \mathbb{R}^{n \times b}$, with *b* being the block size:

$$\hat{\rho}_k(\hat{\boldsymbol{H}})\boldsymbol{X} = \sum_{j=0}^k \hat{\nu}_j^k T_j(\hat{\boldsymbol{H}}) \boldsymbol{X}, \quad \hat{\nu}_j^k = \mu_j g_j^k / \rho_k(\gamma)$$
(15)

• Rewrite Eq. (15) using $W_j = T_j(\hat{H}) X$ with $W_0 = X$, $W_1 = \hat{H}X$, and $W_j = 2 \hat{H} W_{j-1} - W_{j-2}$ for j > 1

$$\hat{\rho}_k(\hat{H})\boldsymbol{X} = \sum_{j=0}^k \hat{\nu}_j^k \boldsymbol{W}_j$$
 (16)

EHzürich

Performance Measurements for $\hat{ ho}_k(\hat{H}_s)X$

- $H_s \in \mathbb{R}^{96000 \times 96000}$, $nnz(H_s) = 23985126$
- Distributed computation of $\hat{
 ho}_k(\hat{H}_s) X$ with $X \in \mathbb{R}^{n imes b}$
- Ra cluster @ PSI: 4 nodes, 2 Intel Ceon E5-2697Av4 (2.60 GHz) processors per node, 16 cores per processor. Total: 128 cores
- Measurement data: Mean time over 10 runs, with 2 warm-up computations before the actual measurements

Speedup and Parallel Efficiency

Speedup: $S_p = t_1/t_p$. Efficiency: $E_p = S_p/p$ (speedup per core)

Figure 12: Speedup (left) and parallel efficiency (right) of the $\hat{\rho}_k(\hat{H}_s)X$ product with k = 500 and b = 32

Speedup and Parallel Efficiency

Figure 13: Speedup (left) and parallel efficiency (right) of the $\hat{\rho}_k(\hat{H}_s)X$ product with k = 151 and b = 128

Strong Scaling of $\hat{\rho}_k(\hat{H}_s) X$

Fix degree k or block size b and increase number of cores.

Figure 14: Strong scaling measurements of the $\hat{\rho}_k(\hat{H}_s)X$ product

Weak Scaling of $\hat{ ho}_k(\hat{H}_s) X$

Constant workload per core, add more cores to solve larger total problem.

(a) b = 8 per core and fixed k = 151. (b) k = 50 per core and fixed b = 32. Figure 15: Weak scaling measurements of the $\hat{\rho}_k(\hat{H}_s)X$ product

Diagonalization Results

- Diagonalized 8 Hessian matrices $m{H}_1,\ldots,m{H}_8\in\mathbb{R}^{768000 imes768000}$
- Residual vector: $\boldsymbol{r}_i = \boldsymbol{H}_k \boldsymbol{u}_i \lambda_i \boldsymbol{u}_i, \quad k = 1, \dots, 8$

Matrix	nnz	Num. $\lambda \in [0.1, 2]$	Max. $ r_i $
H_1	191893806	1068	1.1303×10^{-9}
$oldsymbol{H}_2$	191883888	1030	7.2249×10^{-9}
$oldsymbol{H}_3$	191903166	1050	3.5170×10^{-8}
H_4	191851848	1075	7.0602×10^{-9}
$oldsymbol{H}_5$	191832588	1077	9.1160×10^{-9}
H_6	191859012	1079	4.0634×10^{-9}
$oldsymbol{H}_7$	191887542	1058	1.9001×10^{-9}
$oldsymbol{H}_8$	191853378	1051	8.0480×10^{-9}

- Since sound has long wavelength, many particles should be affected by vibrational eigenmode
- Amount of particles moving together in the vibrational eigenmodes is usually quantified by the participation ratio (PR) defined for each eigenmode j as

$$PR(\omega_j) = \frac{1}{N} \frac{\left(\sum_i u_i^2(\omega_j)\right)^2}{\sum_i u_i^4(\omega_j)} \quad , \tag{17}$$

where u_i is the displacement of the *i*th atom

- Isolated particle: PR = 1/N
- Translational motion: PR = 1 (all particles are involved)

Figure 16: Participation ratio for H_1

Figure 17: Participation ratio for H_2

Figure 18: Participation ratio for H_3

Figure 19: Displacements in x - y plane ($\delta z = 0.15$ Å) for eigenmode of H_1 . Arrow size \propto displacement of particles (\times 300)

Figure 20: Displacements in x - y plane ($\delta z = 0.15$ Å) for eigenmode of H_1 . Arrow size \propto displacement of particles (\times 300)

Figure 21: Displacements in x - y plane ($\delta z = 0.15$ Å) for eigenmode of H_1 . Arrow size \propto displacement of particles (\times 300)

Figure 22: Displacements in x - y plane ($\delta z = 0.15$ Å) for eigenmode of

 $m{H}_1.$ Arrow size \propto displacement of particles (imes 300)

Results: Conclusion

- Results for given samples look promising
 - Larger samples for further analysis
- Scaling results look good, too

Project: Conclusion

- Implementing numerical algorithms is fun (and hard)
 - Seeing results is even better
- Unit testing and debugging MPI code can be challenging
- Running code on different clusters can eventually be full of surprises

EHzürich

Future Work

- Run larger samples
- Extend testing framework
- Try a 2D parallel distribution pattern
- Implementation of slicing using different MPI world settings
- Implementation of different approaches for the approximation of the extremal eigenvalues
- Implementation of different approaches for the estimation of the eigenvalue count

ETH zürich

Acknowledgements

- Peter Arbenz
- Peter Derlet
- The group

References

- Edoardo Di Napoli, Eric Polizzi, and Yousef Saad. Efficient estimation of eigenvalue counts in an interval. *Numerical Linear Algebra with Applications*, 23(4):674–692, 2016.
- [2] Ruipeng Li, Yuanzhe Xi, Eugene Vecharynski, Chao Yang, and Yousef Saad. A thick-restart lanczos algorithm with polynomial filtering for hermitian eigenvalue problems. *SIAM Journal on Scientific Computing*, 38(4):A2512–A2534, 2016.