Electronic Structure of Matter — Wave Functions and Density Functionals [1]

Nobel Lecture, January 28, 1999 by Walter Kohn

Case Studies Seminar, May 26, 2016 by Giuseppe Accaputo

Schrödinger's Equation

$$E\Psi = \hat{H}\Psi \tag{1}$$

Shortly after Schrödinger's equation had been validated for simple small systems like ${\rm He}$ and ${\rm H}_2,$ Dirac declared that chemistry had come to an end.

- Chemistry's content was entirely contained in this powerful equation
- But he added: in almost all cases, this equation is far too complex to solve

Problems with Schrödinger's Equation

- Comprehension becomes difficult: When high accuracy is required, so many Slater determinants are required.
 - \blacktriangleright In some calculations up to $\sim 10^9$ Slater determinants
- Practical problems: Multiparticle wavefunction methods when applied to systems of N particles encounter an exponential wall
 - Critical value at $N_0 \approx 10$

Contributions of Density Functional Theory (DFT)

- Improved comprehension: Focuses on quantities in the real, 3-dimensional coordinate space, i.e., density n(r) of the ground state
- ► Practical contribution: computing time T rises much more moderately with increasing N (T ~ N^α, α = 2, 3)
 - \blacktriangleright DFT can handle systems with up to $N=\mathcal{O}(10^2)-\mathcal{O}(10^3)$ atoms

DFT Theory Background

- Kohn had been interested in disordered metallic alloys
- \blacktriangleright In a Cu-Zn alloy there is transfer of charge between Cu and Zn
- Electrostatic interaction energy of these charges are important part of the total energy
- ► Natural emphasis on the electron density distribution n(r) due to given energetics of the system

Thomas Fermi (TF) Theory

- Crude theory of electronic energy in terms of n(r)
 - Existed since the 1920s
- Good for describing total energies of atoms
- Bad for questions of chemistry and materials science
 - Example: did not lead to any chemical binding
- Interesting feature: considered interacting electrons moving in an external potential v(r)

Thomas Fermi (TF) Theory

- Rough representation of the exact solution of the many-electron Schrödinger equation
- TF theory: expressed in terms of n(r)
- Schrödinger theory: expressed in terms of $\Psi(r_1, \ldots, r_N)$

Question:

- 1. How does one establish a connection between the two theories?
- 2. Is a *complete*, exact description of the groundstate in terms of n(r) possible in principle?
 - \blacktriangleright Requirement: n(r) has to completely characterize the system

The Hohenberg-Kohn (HK) Formulation of DFT

Hypothesis: Knowledge of groundstate density of n(r) for any electronic system uniquely determines the system.

Basic Lemma of Hohenberg-Kohn: The groundstate density n(r) of a bound system of interacting electrons in some external potential v(r) determines this potential uniquely.

- Uniquely means up to an uninteresting additive constant
- Lemma is mathematically rigorous

The Hohenberg-Kohn Variational Principle

- Most important property of electronic groundstate is energy E
- Rayleigh-Ritz minimal principle:

$$E = \min_{\Psi} (\tilde{\Psi}, H\tilde{\Psi})$$
⁽²⁾

Constrained energy minimum:

$$E_v[\tilde{n}(r)] = \int v(r)\tilde{n}(r) + F[\tilde{n}(r)]$$
(3)

Result: Seemingly trivial problem of finding minimum of $E_v[\tilde{n}(r)]$ with respect to 3-dimensional trial function $\tilde{n}(r)$ ($\tilde{\Psi}$ is 3N-dimensional)

The Universal Functional $F[\tilde{n}(r)]$

$$F[\tilde{n}(r)] = T_s[\tilde{n}(r)] + \frac{1}{2} \int \frac{\tilde{n}(r)\tilde{n}(r')}{|r-r'|} dr dr' + E_{xc}[\tilde{n}(r)]$$
(4)

 $\blacktriangleright \ E_{xc}[\tilde{n}(r)]$ is the exchange-correlation energy functional and is unknown

The Self Consistent Kohn-Sham Equations

- Hartree proposed a set of self consistent single particle equations for the approx. description of electronic structure of atoms
- Hartree equations describe atomic groundstates much better than TF theory
- Kohn extracted Hartree equations from the HK variational principle for the energy (with the help of Lu Sham)

The Self Consistent Kohn-Sham Equations

The groundstate energy is given by

$$E = \sum_{j} \epsilon_{j} + E_{xc}[\tilde{n}(r)] - \int v_{xc}(r)n(r)\mathrm{d}v - \frac{1}{2}\int \frac{\tilde{n}(r)\tilde{n}(r')}{|r-r'|}\mathrm{d}r\mathrm{d}r'$$
(5)

▶ $v_{xc}(r)$ is the exchange-correlation potential (derived from E_{xc})

• With exact E_{xc} and v_{xc} all many body effects are included

Approximation for $E_{xc}[\tilde{n}(r)]$

- ► DFT has been presented as a formal mathematical framework for viewing electronic structure from the perspective of *n*(*r*)
- ▶ Requires approximations for F[n(r)] (HK) and for $E_{xc}[n(r)]$ (KS)
- Approximations reflect the physics of the electronic structure and come from outside of DFT

The Local Density Approximation (LDA)

$$E_{xc}^{LDA} = \int e_{xc}(n(r))n(r)\mathrm{d}r \tag{6}$$

- Exchange-correlation energy of a uniform electron gas of density n
- Exact for uniform electron gas
- Fails for heavy fermion systems

Conclusion

- DFT referred to as standard model for periodic solids
- DFT complements traditional wave-function based methods in chemistry
- DFT works rather poorly for long range polarization energies, partially filled electronic shells and reaction barriers
- Accuracy of Exc approximations dominates DFT

Walter Kohn.

Nobel lecture: Electronic structure of matter—wave functions and density functionals.

Reviews of Modern Physics, 71(5):1253, 1999.