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Disclaimer
This is a summary of the Computational Quantum Physics lecture [2] taught by Prof.
Troyer during the spring semester 2015 at the ETH Zürich and was written by me as a
preparation for the oral exam. All of the equations shown in this summary have been
presented during the lecture, which is based on [3]; equations taken from other sources
are appropriately referenced in the text.

Quantum Mechanics in One Hour
Basis of Quantum Mechanics
Wave Functions and Hilbert Spaces

• Pure state of quantum system is described by a wave function

|Ψ〉 ∈ H , (1)

where H is a Hilbert space.

• Wave functions are usually normalized

‖ |Ψ〉 ‖ =
√
〈Ψ〉 = 1 . (2)

• Spin-1/2 system describes the two spin states of an electron
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– H = C2 with basis vectors

|↑〉 =

(
1
0

)
, (3)

|↓〉 =

(
1
0

)
. (4)

• Quantum spin can exist in any complex superposition

|Ψ〉 = α |↑〉+ β |↓〉 , (5)

where Eq. (2) requires that

|α|2 + |β|2 = 1 . (6)

– The state

|→〉 = 1/
√

2 (|↑〉+ |↓〉) (7)

is a superposition that describes the spin pointing in the positive x-direction.

Mixed States and Density Matrices

• General state of a quantum system in nature is described by the density matrix ρ
with unit trace

Tr ρ = 1 . (8)

• Density matrix of a pure state:

ρpure = |Ψ〉 〈Ψ| . (9)

– Density matrix of a spin pointing in the positive x-direction is

ρ→ = |→〉 〈→| =
(

1/2 1/2
1/2 1/2

)
. (10)

– Density matrix of a spin pointing up with 50% probability and pointing down
with a 50% probability is

ρmixed =

(
1/2 0
0 1/2

)
. (11)
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Observables

• A physical observable is represented by a self-adjoint linear operator acting on the
Hilbert space.

– In a finite-dimensional Hilbert space, the operator can be represented by a
Hermitian matrix.

• For the spin-1/2 system, the spin is given by

S = (Sx, Sy, Sz)T =
~
2

(σx, σy, σz)T =
~
2
σ , (12)

where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (13)

are the Pauli matrices.

– The observables Sx,Sy,Sz do not commute, i.e.,

[Sx,Sy] 6= 0 , (14)

[Sy,Sz] 6= 0 , (15)

[Sz,Sx] 6= 0 , (16)

(17)

which is the root difference between classical and quantum mechanics, since
due to Eqs. (15), (16) and (17) the observables Sx, Sy, Sz cannot be mea-
sured simultaneously.

The Measurement Process

• Measurement of quantum system is intrusive and not deterministic, meaning that
the measurement process will change the state of the quantum system.

– After measuring an observable A, the new wave function of the quantum
system will be an eigenvector of A and the outcome of the measurement the
corresponding eigenvalue.

• Expectation value of a measurement

1. from a wave function Ψ:

〈A〉 = 〈Ψ|A |Ψ〉 . (18)

2. from a density matrix ρ:

〈A〉 = Tr(ρA) . (19)
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The Uncertainty Relation

• If two observables A and B do not commute, i.e.,

[A,B] 6= 0 , (20)

then both observables cannot be measured simultaneously.

– When measuringA, the wave function is changed to an eigenstate ofA, which
changes the result of a subsequent measurement of B.

– Heisenberg uncertainty relation: if two observables A and B do not commute
but satisfy [A,B] = i~, then

∆A∆B ≥ ~/2 (21)

has to be satisfied, where ∆A is the root-mean-square deviation of A.

The Schrödinger Equation

The Time-Dependent Schrödinger Equation

• The wave function |Ψ〉 of a quantum system evolves according to

i~
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 , (22)

where H is the Hamilton operator.

The Time-Independent Schrödinger Equation

• Using the Ansatz

|Ψ(t)〉 = exp{−iEt/~} |Ψ(t)〉 , (23)

where E is the energy of the quantum system, the Schrödinger equation simplifies
to a linear eigenvalue problem

H |Ψ(t)〉 = E |Ψ(t)〉 . (24)

A Quantum Particle in Free Space
• Hilbert space: complex functions ∈ C2(Rn)

– The wave functions 〈Ψ| are complex valued functions Ψ(x) in n-dimensional
space

• Position operator:

x̂ = x . (25)
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• Momentum operator:

p̂ = −i~∇ . (26)

• Schrödinger equation of a quantum particle in an external potential V (x)

i~
∂

∂t
Ψ = − ~2

2m
∇2Ψ + V (x)Ψ (27)

can be obtained from the classical Hamilton function by replacing x and p by the
operators in Eqs. (25) and (26).

– Classical Hamilton function:

H(x,p) =
p2

2m
+ V (x) . (28)

– Quantum mechanical Hamiltonian operator:

H(x,p) =
p̂2

2m
+ V (x̂) = − ~2

2m
∇2 + V (x) . (29)

The Quantum One-Body Problem
The Time-Independent 1D Schrödinger Equation
• Time-Independent one-dimensional Schrödinger Equation for a particle with mass
m in a potential V (x):

− ~2

2m

∂2Ψ(x)

∂x2
+ V (x)Ψ(x) = EΨ(x) . (30)

The Numerov Algorithm

• After rewriting second order differential equations to a coupled system of two first
order differential equations, any ODE solver (e.g. Runge-Kutta method) could be
applied, but there exist better methods.

• For the special form

Ψ′′(x) + k(x) Ψ(x) = 0 , (31)

with

k(x) = 2m[E − V (x)]/~2 (32)

for the Schrödinger equation the Numerov algorithm can be used.
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• Numerov algorithm (locally of 5th order, globally of 4th order):(
1 +

∆x2

12
kn+1

)
Ψn+1 = 2

(
1− 5∆x2

12
kn

)
Ψn

−
(

1 +
∆x2

12
kn−1

)
Ψn−1 +O(∆x6) , (33)

where Ψn = Ψ(xn) and kn = k(xn).

– Derivation of the Numerov algorithm

1. Start from the Taylor expansion of Ψn:

Ψn±1 = Ψn ±∆xΨ′ +
∆x2

2
Ψ′′n ±

∆x3

6
Ψ(3)
n ±

∆x4

24
Ψ(4)
n +O(∆x6) .

(34)

2. Add Ψn+1 and Ψn−1:

Ψn+1 + Ψn−1 = 2Ψn + ∆x2Ψ′′n +
∆x4

12
Ψ(4)
n . (35)

3. Replace in Eq. (35) the fourth derivatives by a finite difference second
derivative of the second derivatives:

Ψ(4)
n =

Ψ′′n+1 + Ψ′′n−1 − 2Ψ′′n
∆x2

. (36)

4. Use Eq. (31) to substitute Ψ′′(x) with −k(x)Ψ(x) in Eq. (35).

Numerov Algorithm: Initial Values

• For potentials V (x) with reflective symmetry, i.e., V (x) = V (−x) the wave func-
tions need to be either even (Ψ(x) = Ψ(−x)) or odd (Ψ(x) = −Ψ(x)) under
reflection

• Since a step of the Numerov algorithm (Eq. (33)) depends on both Ψn and Ψn−1,
to start the algorithm we need the wave function at two initial values.

– For the even solution using a half-integer mesh with mesh points

xn+1/2 = (n+ 1/2)∆x (37)

and therefore pick initial values

Ψ(x−1/2) = Ψ(x1/2) = 1 . (38)

– For the odd solution:
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1. Due to Ψ(0) = −Ψ(0) it follows that for the first starting value one gets
Ψ(0) = 0

2. Using an integer mesh with mesh points xn = n∆x one picks Ψ(x1) = 1
as the second starting value

• For potentials V (x) vanishing at large distances, i.e., V (x) = 0 for |x| ≥ a the exact
solution of the Schrödinger equation at large can be used to define the starting
points, e.g.

Ψ(−a) = 1 , (39)

Ψ(−a−∆x) = exp{−∆x
√

2mE/~} . (40)

• For potentials V (x) that do not vanish, we need to begin with a single starting
value Ψ(x0) and obtain the second starting value Ψ(x1) by performing an integra-
tion over the first space step ∆x with an Euler or Runge-Kutta algorithm.

The One-Dimensional Scattering Problem

• Scattering problem is the numerically easiest quantum problem, since solutions
exist for all energies E > 0 if the potential vanishes at large distances, i.e., V (x)→
0 for x→∞

• Potential barrier: V (x) > 0 ∀x ∈ [0, a] and V (x) = 0 ∀x 6= [0, a]

– For a particle approaching the barrier from the left, i.e., x < 0, the following
ansatz can be made:

ΨL(x) = A exp{iqx}+B exp{−iqx} , (41)

where A is the amplitude of the incoming wave and B the amplitude of the
reflected wave

– For a particle approaching from the right, i.e., x > a, we can make the fol-
lowing ansatz:

ΨR(x) = C exp{iqx} . (42)

– A,B,C have to be determined by matching to a numerical solution of the
Schrödinger equation in the interval [0, a] and is done the following way:

∗ Set C = 1 and use two points a and a + ∆x as starting points for a
Numerov integration.

∗ Integrate the Schrödinger equation numerically - backwards in space,
from a to 0 - using the Numerov algorithm.

∗ Match numerical solution of the Schrödinger equation for x < 0 to Eq.
(41) to determine A,B.
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– Reflection probability:

R =
|B|2

|A|2
(43)

– Transmission probability:

T =
1

|A|2
(44)

Bound States and Solution of the Eigenvalue Problem

• Bound state describes a system where a particle is subject to a potential such that
the particle has a tendency to remain localised in one or more regions of space.

• Scattering states exist for all energies E > 0.

• Bound states solutions of the Schrödinger equation with E < 0 exist only for
discrete energy eigenvalues.

– Integrating the Schrödinger equation from −∞ to∞ generates solutions that
diverge to ±∞ as x→∞ for almost all values.

∗ These solutions cannot be normalized and thus are not valid solutions for
the Schrödinger equation.

∗ Only for some special eigenvalues E will the solution converge to 0 as
x→∞.

– Find suitable solutions of the Schrödinger equation

Ψ
′′
(x) +

2m

~2
[E − V (x)] Ψ(x) = 0 (45)

for E < 0 using the following methods:

1. Method 1: Shooting method

a) V (x) = 0 ∀x 6∈ [0, a]

b) Start with an initial guess for E

c) Integrate from x = 0 to xf � a and obtain ΨE(xf )

d) Use a root solver (e.g. bisection method) to look for an energy E
with ΨE(xf ) ≈ 0

2. Method 2: Matching method, that is, integrate the Schrödinger equation
from both sides towards the center

a) Pick starting point b and choose E = V (b)

b) Integrate ΨL(x) from x = 0 to a chosen point b and obtain ΨL(b);
then, numerically estimate

Ψ′L(b) =
ΨL(b)−ΨL(b−∆x)

∆x
. (46)
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c) Integrate ΨR(x) from x = a to the chosen point b and obtain ΨR(b);
then, numerically estimate

Ψ′R(b) =
ΨR(b)−ΨR(b−∆x)

∆x
. (47)

d) At point b the wave functions and their first two derivatives have to
match, since the solution Ψ(x) of the Schrödinger equation has to be
in C2(R); the following conditions are obtained from these facts:

ΨL(b) = αΨR(b) (48)

Ψ′L(b) = αΨ′R(b) (49)

Ψ′L(b) = αΨ′′R(b) (50)

∗ The conditions in Eqs. (48) and (49) can be combined to the con-
dition that the logarithmic derivatives should vanish:

d log ΨL

dx

∣∣∣∣∣
x=b

=
Ψ′L(b)

ΨL(b)
=

Ψ′R(b)

ΨR(b)
=

d log ΨR

dx

∣∣∣∣∣
x=b

. (51)

∗ The condition shown in Eq. (50) is automatically fulfilled for V (b) =
E, since Ψ

′′
(b) evaluates to 0 (see Eq. (45))

e) Find the root using a shooting method, e.g. bisection algorithm.

The Time-Independent Schrödinger Equation in Higher Dimensions
Factorization Along the Coordinate Axis

• For the three-dimensional Schrödinger equation in a cubic box with potential
V (r) = V (x, y, z) = V (x)V (y)V (z), using the product ansatz

Ψ(r) = Ψx(x)Ψy(y)Ψz(z) (52)

the PDE factorizes into three ODEs which can be solved with the previous methods.

Potential With Spherical Symmetry

• For spherically symmetric potentials with V (r) = V (‖r‖) an ansatz using spherical
harmonics is used:

Ψl,m(r) = Ψl,m(r, θ, φ) =
u(r)

r
Yl,m(θ, φ) . (53)

• Using Eq. (53) the three-dimensional Schrödinger equation can be reduced to a
one-dimensional one for the radial wave function u(r) in [0,∞):(

− ~2

2m

d2

dr2
+

~2 l (l + 1)

2mr2
+ V (r)

)
u(r) = Eu(r) . (54)
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– Given the singularity at r → 0, a numerical integration should start at large
distances r and integrate towards r = 0.

∗ Largest errors are only accumulated at the last steps of the integration.

Finite Difference Methods

• Discretize the three-dimensional Schrödinger equation (~ = 1)

∇2Ψ(r) + 2m(E − V (r))Ψ(r) = 0 , (55)

the space is discretized and the system of linear equations

1/∆x2 [Ψ(xn+1, yn, zn) + Ψ(xn−1, yn, zn) + Ψ(xn, yn+1, zn)]

Ψ(xn, yn−1, zn) + Ψ(xn, yn, zn+1) + Ψ(xn, yn, zn−1)]

+ [2m(E − V (r))− 6/∆x2]Ψ(xn, yn, zn) = 0 . (56)

– For small matrices, use a direct solver.

– For large matrices the discretization results in a sparse matrix; use optimized
iterative numerical algorithms.

– To calculate bound states, an eigenvalue problem has to be solved.

∗ For small systems (full matrix can be stored in memory) use direct solvers.

∗ For bigger systems, use sparse solvers (e.g. Lanczos algorithm).

Variational Solutions Using a Finite Basis Set

• For general potentials or for systems consisting of more than two particles we need
to employ a PDE solver, since it is not possible to reduce the Schrödinger equation
to a one-dimensional problem.

• Expand the wave functions in terms of a finite set of basis functions

|Φ〉 =

N∑
i=1

ai |ui〉 . (57)

• The ground state energy is estimated by minimizing the energy of the variational
wave function

E∗ =
〈Φ|H |Φ〉
〈Φ|Φ〉

. (58)

– E∗ will converge towards the true ground state energy E0 by increasing the
siz eof the basis set.
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• The matrix elements of the Hamilton operator H are defined as

Hij = 〈ui|H |uj〉 =

∫
dr u∗i (r)

(
− ~2

2m
∇2 + V

)
uj(r) . (59)

• The matrix elements of the overlap matrix are given by

Sij = 〈ui|uj〉 =

∫
dr u∗i (r)uj(r) . (60)

– For an orthogonal basis set, S is the identity matrix.

• By minimizing Eq. (58) we obtain the generalized eigenvalue problem∑
j

Hijaj = E
∑
k

Sikak for i = 1, . . . , N ⇔ Ha = E Sa . (61)

– For an orthogonal basis set, Eq. (61) reduces to an ordinary eigenvalue prob-
lem and can be solved using a sparse solver, e.g. Lanczos algorithm.

• In general, to solve Eq. (61) orthogonal matrices U have to be found such that
UTSU is the identity matrix.

– By introducing b = U−1a the problem given by Eq. (61) can be rearranged
into

Ha = E Sa

⇔ HUb = E SUb

⇔ UT HUa = EUT SUb = Eb (62)

and we end up with a standard eigenvalue problem for UT HU, which can
be solved by eigensolvers for generalized eigenvalue problems.

The Time-Dependent Schrödinger Equation
Spectral Methods

1. To calculate the time evolution of a state |Ψ(t0)〉 from time t0 to t first solve the
stationary eigenvalue problem

H |Φ〉 = E |Φ〉 , (63)

and calculate the eigenvectors |Φn〉 with eigenvalues εn.

2. Represent the initial wave function |Ψ〉 by a spectral decomposition

|Ψ(t0)〉 =
∑
n

cn |Φn〉 . (64)
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3. At time t we then obtain (each |Φn〉 is an eigenvector of H)

|Ψ(t)〉 =
∑
n

cn exp{−iεn(t− t0)/~} |Φn〉 . (65)

• Drawback: this approach is only useful for very small problems since diagonalizing
the matrix takes huge computational effort.

Direct Numerical Integration

• Choose direct numerical integration if the Hamiltonian changes over time, i.e.,
H(t) or if the number of basis states is too large too perform a complete diagonal-
ization of the Hamiltonian

• After choosing a set of basis functions, a set of coupled ODEs which can be evolved
for each point along the time line by standard ODE solvers.

• The exact quantum evolution

Ψ(x, t+ ∆t) = exp{−iH∆t/~}Ψ(x, t) (66)

is unitary, i.e., U∗U = UU∗ = I and thus conserves the norm.

– The Forward Euler method does not conserve the norm and is thus not suit-
able for this task.

• The following unitary approximant is used as integrator, since it conserves the
norm:

Ψ(x, t+ ∆t) =

(
1 +

i∆t

2~
H

)−1(
1− i∆t

2~
H

)
Ψ(x, t)

⇔
(

1 +
i∆t

2~
H

)
Ψ(x, t+ ∆t) =

(
1− i∆t

2~
H

)
Ψ(x, t) . (67)

1. Taylor expansion of the exact time evolution operator presented in Eq. (66)
is given by

exp{−iH∆t/~} =

(
1− i∆t

2~
H

)
+O(∆t2) . (68)

2. Reformulate time evolution operator using Eq. (68):

exp{iH∆t/2~} = (exp{−iH∆t/2~})−1 exp{−iH∆t/2~}

=

(
1 +

i∆t

2~
H

)−1(
1− i∆t

2~
H

)
+O(∆t3) . (69)

The resulting operator is unitary and is used in the unitary integrator algo-
rithm shown in Eq. (67).
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• The integrator presented in Eq. (67) is an implicit integrator, meaning that at each
timestep a linear system of equations needs to be solved.

– For one-dimensional problems H is often tridiagonal and a tridiagonal solver
can be used.

– In higher dimensions H will not be tridiagonal, but still sparse, meaning we
can use iterative algorithms.

The Split Operator Method

• Split the Hamilton operator as follows:

H = T̂ + V̂ , (70)

with

T̂ =
1

2m
p̂2 (71)

V̂ = V (x) (72)

– T̂ is diagonal in momentum space

– V̂ is diagonal in position space

• Split the time evolution:

exp{−i∆tH/~} = exp{−i∆tV̂ /(2~)}
· exp{−i∆tT̂ /~}
· exp{−i∆tV̂ /(2~)}+O(∆t3) . (73)

• Perform individual time evolutions in real space (Eq. (74)) and momentum space
(Eq. (75)):

[exp{−i∆tV̂ /(2~)} |Ψ〉](x) = exp{−i∆tV̂ /(2~)}Ψ(x) , (74)

[exp{−i∆tT̂ /~} |Ψ〉](k) = exp{−i∆t ~ ‖k‖2/(2m)}Ψ(k) . (75)

– Quantum state can be represented by a superposition of basis states.

∗ Ψ(x) is said to be the wave function in position space if the eigenfunctions
of the position operator are chosen as a set of basis functions:

·

Ψ(x) =
∑
j

ΦjΨj(x) (76)

∗ Φ(k) is said to be the wave function in momentum space if the eigenfunc-
tions of the momentum operator are chosen as a set of basis functions:
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·

Φ(k) =
∑
j

ΨjΦj(k) (77)

– Basis change from real to momentum space is performed using a Fast Fourier
Transform (FFT).

• The split operator method results in a fast and unitary integrator

Exact Diagonalization of Quantum Spin
Models
Quantum Spin Models
• Single quantum particle is described by a Hilbert spaceH of dimension dimH = d.

• N distinguishable quantum particles are described by the tensor product of N
Hilbert spaces

H(N) ≡ H⊗N = ⊗Ni=1H , (78)

with dimension dN .

• A single spin-1/2 particle has Hilbert space H = C2 with dimH = 2

– N spin-1/2 particles have a Hilbert space H(N) = C2N with dimH = 2N .

∗ The basis for N = 30 spin-1/2 particles is already of size 230 ≈ 109

· Small and moderately sized systems of up to 30 spin-1/2 can be eval-
uated by direct calculations. To go to larger systems, quantum Monte
Carlo methods can be used (for bosonic systems, and approximate
methods for fermions that reduce the many-particle problem to a
single-particle problem)

The Transverse Field Ising Model

• The transverse field Ising model (TFIM) adds a magnetic field in the x direction to
a lattice of spin-1/2 particles coupled by an Ising interaction:

H =
∑
〈i,j〉

Jijσ
z
i σ

z
j − Γ

∑
i

σxi . (79)

– 〈i, j〉 denotes the sum over all bonds in the lattice.

– The Pauli matrix σx flips an ↑-spin to a ↓-spin, thus introducing quantum
dynamics to the Ising model.
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The Quantum Heisenberg Model

• Hamiltonian of the quantum Heisenberg model:

H =
∑
〈i,j〉

JijSiSj =
∑
〈i,j〉

Jij [1/2 (S+
i S
−
j + S−i S

+
j ) + Szi S

z
j ] . . (80)

– S+ = Sx + iSy, is a raising (creation) operator.

– S− = Sx − iSy is a lowering (annihilation) operator.

– Both ladder operators in Eq. (80) are used to keep the total magnetization
unchanged.

The Quantum XXZ Model

• Magnetic materials might not have the same coupling strength in all spin direction
(often weaker or stronger coupling along one direction).

• Hamiltonian of the quantum XXZ model:

H =
∑
〈i,j〉

Jxij/2(S+
i S
−
j + S−i S

+
j ) + JzijS

z
i S

z
j . (81)

Exact Diagonalization
• Exact diagonalization: solving a quantum model by using an iterative eigensolver

to calculate the ground state and low-lying excited states.

• Matrix representation of the model Hamiltonian is typically sparse, but still huge
regarding memory requirement.

– We have O(N2) terms in the Hamiltonian, resulting in O(N2) non-zero ele-
ments per row and column of the matrix =⇒ O(N2 2N ) non-zero elements
in the resulting matrix.

• Memory usage is minimized by only storing the three vectors required for the
Lanczos recurrence relations.

– The Lanczos algorithm requires the computation of matrix-vector products
but does not store the full matrix.
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Lanczos Algorithm

• The goal of the Lanczos algorithm is to find the k largest/smallest eigenvalues and
eigenvectors

– Run-time is O(N2) for a dense and O(N) for a sparse matrix

The algorithm:
1. Build a Krylov basis {v1,v2, . . . ,vM} spanning the Krylov subspace KM =

span{u1,u2, . . . ,uM} by doing M iterations of the power method

un+1 =
Aun
‖Aun‖

(82)

2. The iteration equation is given by

βn+1vn+1 = Avn − αnvn − βnvn−1 (83)

– Advantage: we only need to store 3 vectors of lengthN , namely vn+1,vn,
and vn−1; dense matrix eigensolvers require storage of order N2

3. In the Krylov basis the matrix A is tridiagonal; the eigenvalues of A in the
Krylov basis are good approximations of the eigenvalues of A

– The extreme eigenvalues converge very fast, i.e., M � N iterations are
sufficient to obtain those eigenvalues
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Exact Diagonalization for the Transverse Field Ising Model

• Core of the code is a matrix-vector multiplication function that computes

|Φ〉 = H |Ψ〉 . (84)

• 2N basis states of a quantum spin-1/2 TFIM can be represented by N -bit strings.

– 2N configurations are enumerated by the integers 0, . . . , 2N − 1.

– i-th bit of an integer corresponds to the orientation of the i-th spin in that
configuration.

∗ 0 denotes an ↑-spin.

∗ 1 denotes an ↓-spin.

Bit-Operators in C++

• bit_arg << shift_arg

– Shift bits of bit_arg shift_arg places to the left.

– Or: multiplication by 2shift_arg.

• bit_arg >> shift_arg

– Shift bits of bit_arg shift_arg places to the right.

– Or: integer division by 2shift_arg.

• Bitwise AND: left_arg & right_arg

• Bitwise OR: left_arg | right_arg

• Bitwise XOR: left_arg ^ right_arg

– A XOR B sets the i-th bit of the result to 1 if the i-th bit of A,B is not equal;
else it sets it to 0.

Implementation of the Transverse Field Ising Model

• Hamiltonian of the transverse field Ising model:

H =
∑
〈i,j〉

Jijσ
z
i σ

z
j︸ ︷︷ ︸

Ising term

− Γ
∑
i

σxi︸ ︷︷ ︸
Transverse field term

. (85)

• state_dimension = 1 << N = 2N

– Dimension of the tensor product of N Hilbert spaces H(N)

• Calculation of the Ising term:
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for( state_t s = 0; s < dimension; ++s ) {

double jtotal = 0.;

for( int r = 0; r < N - 1; ++r )

jtotal += ((s >> r)^(s >> (r+1))) & 1 ? -J: +J;

phi[s] = jtotal * psi[s];

}

– s ∈ [0, 2N − 1] is used to represent all the available 2N states.

– r ∈ [0, N − 1] is used to address the i-th bit of the state s, which represents
the orientation of the i-th spin.

– jtotal += ((s >> r)^(s >> (r+1)))& 1 ? -J: +J;

1. With s >> r, the r-th bit of the state s is moved to the right-most position
of the state (same for the (r + 1)-th bit with s >> (r + 1)), i.e., the
information about the spin direction of the r-th and (r + 1)-th spin is
moved to the right-most position of the bit-string.

2. Both bit-strings are then compared using the XOR-operator; the resulting
bit-string is called k.

∗ We are using the XOR-operator, since if both spins are equal (either
both are up or both are down) it will evaluate to the same value, i.e.,
0.

3. Since we are only interested in the right-most bit of k, we select that bit
using the bitwise AND-operator with 1 = 000. . . 0001.

∗ If the result of (((s >> r)^(s >> (r+1)))& 1) is 1, then both spins
have different orientation and we get −J , since c = a ^ b sets the
i-th bit of c to 1 if the i-th bit of a and the i-th bit of b are different.

∗ Else, if the result is 0, then both spins have the same orientation and
we get +J .

• Calculation of the transverse field term:

for( state_t s = 0; s < dimension; ++s ) {

double jtotal = 0.;

for( int r = 0; r < N - 1; ++r ){

state_t sflip = s ^ (1<<r);

phi[sflip] -= Gamma*psi[s];

}

phi[s] = jtotal * psi[s];

}

Exact Diagonalization for the Quantum XXZ and Heisenberg Models

• Heisenberg model does conserve the total magnetization. This allows to restrict
the diagonalization to a subspace of fixed magnetization.
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• These states have a fixed number of N/2+M z up-spins and N/2−M z down-spins.

– States can be characterized by all N -bit strings that have N/2 −M z bits set
to 0.

• Handling of the fixed magnetization basis states:

for (state_type s=0;s<index_.size();++s)

if(alps:: popcnt(s)== Ndown) {

states_.push_back(s);

index_[s]= states_.size() -1;

}

else

// invalid state

index_[s]=std:: numeric_limits <index_type >:: max();

– states_ is an array of size N/2 − M z that contains all states s with the
required number of down-spins

– item_ is an array of length 2N that contains the index of state s within the
states_ array, i.e., s = states_[index_[s]].

Time Evolution of Quantum Spin Systems
The Trotter-Suzuku Decomposition

• Goal: calculate the matrix potential exp{−iHt)}.

• Split Hamiltonian into a sum of K terms:

H =

K∑
k=1

hk , (86)

which can be easily exponentiated.

• First order version of the Trotter-Suzuku decomposition for a small time step ∆t is

exp{−iH∆t)} =

K∏
k=1

exp{−ihkt)}+O(∆t2) (87)

• Second order version of the Trotter-Suzuku decomposition for a small time step
∆t is

exp{−iH∆t)} = S(∆t/2) +O(∆t3) , (88)

where S is defined as

S(∆t) =

(
K∏
k=1

exp{−ihkt)}

)(
1∏

k=K

exp{−ihkt)}

)
. (89)
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Time Evolution for the Transverse Field Ising Model

• Hamiltonian of the transverse field Ising model:

H =

Ising termHz :=︷ ︸︸ ︷∑
〈i,j〉

Jijσ
z
i σ

z
j +

Transverse field termHx:=︷ ︸︸ ︷(
−Γ
∑
i

σxi

)
. (90)

• Ising term Hz can be easily exponentiated since it is diagonal, and results in diag-
onal matrix:

exp{iHz∆t} =
∏
〈i,j〉

exp{−i∆tJijσ
z
i σ

z
j } . (91)

• Transverse field term Hx splits into N commuting terms for each spins:

exp{iHx∆t} =
∏
i

exp{−i∆tΓσxi } . (92)

Higher Spin
• A quantum spin-S has 2S + 1 states.

• Sz components are −S,−S + 1, . . . , S − 1, S.

• For a spin-S we will need dlog(2S + 1)e bits.

• The spin operators Sx, Sy, Sz are represented by (2S + 1) × (2S + 1) matrices
(higher-dimensional generalizations of the Pauli matrices).

Quantum Computing
Quantum Bits and Quantum Gates
Quantum Bits

• Basic memory element is the quantum bit, or qubit for short.

• Up-spin state is associated with the 0 bit, down-spin state with the 1 bit:

|0〉 = |↑〉 =

(
1
0

)
, (93)

|1〉 = |↓〉 =

(
0
1

)
. (94)
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• Quantum bit can exist in an arbitrary superposition of these two states:

|Ψ〉 = α |0〉+ β |1〉 . (95)

where the normalization condition from Eq. (2) requires that |α|2 + |β|2 = 1.

– |0〉 , |1〉 are the basis vectors and α, β the corresponding amplitudes.

– In the |0〉-|1〉-basis, |Ψ〉 can also be written as

|Ψ〉 = α |0〉+ β |1〉 =

(
α
β

)
. (96)

– Such a state requires infinite number of classical bits to describe α, β in a
binary representation.

• Two quantum bits can be represented as

α |00〉+ β |01〉+ γ |10〉+ δ |11〉 , (97)

where |ab〉 is the state where the first qubit has value a and the second qubit value
b.

• Register of N qubits can store the wave function of N spin-1/2s, or N spin-orbitals
for fermions.

– This would require exponential memory on classical computers.

Quantum Gates

• The quantum mechanical time evolution is unitary, thus awe can only perform
unitary operations on quantum bits and measurements.

• Gate which acts on k qubits is represented by a 2k × 2k unitary matrix.

Single Qubit Gates

1. Pauli-X X

• Quantum analog of a classical NOT gate.

2. Pauly-Y Y

3. Pauli-Z Z

4. Hadamard gate H

• 90 degree rotation around the y axis, rotating a state aligned with z to x.

5. Phase gate S
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6. T gate or π/8 gate T

7. Rz(θ) gate Rz(θ)

• Rotation around the z axis in spin space

8. Rx(θ) = H Rz(θ) H

• Swap z and x with a Hadamard gate, perform a rotation around the z axis
and then rotate it back.

Two-qubit gates

• Common two-qubit gates are controlled gates, consistinng of a control bit and a
target bit.

• Controlled version CU of a single qubit gate U performs the single qubit operation
U on the target qubit only if the control qubit is set to 1.

– Since quantum computers use reversible logic, to generate a two-qubit output
we need a two-qubit input, which is provided by a controlled version of a
single qubit gate.

• Let U =
(
U11 U12
U21 U22

)
be the matrix representation of the gate U ; then the matrix

representation of CU in a basis {|00〉 , |01〉 , |10〉 , |11〉} is
1 0 0 0
0 1 0 0

0 0 U11 U12

0 0 U21 U22

 (98)

– Quantum circuit for the controlled gate is:
•
U

• Most important two-qubit gate is the controlled-NOT-gate (CNOT), and is typically

drawn as •

• The swap gate, which swaps the states of two qubits can be built from three CNOT

gates as
• •

•

• The Hadamard, π/8 and CNOT gates are universal gates, meaning they are suffi-
cient to implement any quantum circuit; all the other gates can be built from these
gates.

Giuseppe Accaputo 22 www.accaputo.ch

www.accaputo.ch


Computational Quantum Physics (Spring Semester 2015 · ETH Zürich)

Quantum Algorithms
Quantum Teleportation

• Quantum teleportation lets us transmit a quantum state by sending just two clas-
sical bits.

• A Bell state is defined as a maximally entangled quantum state of two qubits.

– Quantum entanglement: quantum states of two or more objects have to be de-
scribed with reference to each other, even though the individual objects may
be spatially separated; this leads to correlations between observable physical
properties of the systems.

– It is possible to prepare two particles in a single quantum state such that
when one is observed to be spin-up, the other one will always be observed
to be spin-down and vice versa, this despite the fact that it is impossible to
predict, according to quantum mechanics, which set of measurements will be
observed.

Deutsch Algorithm

• Deutsch problem: Analysis of the single bit binary functions

f(x) : {0, 1} → {0, 1} . (99)

– There are four such functions, which can be divided into two groups:

1. constant functions, for which f(x) is independent of x.

2. balanced functions, for which f(x) is zero for one value of x and unity for
the other.

• It might be possible to determine the value f(0) ⊕ f(1) (a ⊕ b equals 0 if a and b
are the same, and 1 if the are different) using only one evaluation of f as long as
the calculation is performed using a quantum computer.

• Since quantum computers use reversible logic, the binary function f cannot be
implemented directly.

– Define propagator Uf which captures f in within a reversible transformation
by using a system with two input qubits and two output qubits as follows

|x〉 |y〉
Uf−→ |x〉 |y ⊕ f(x)〉 . (100)

• It is not necessary to start with the system in some eigenstate; instead it is possible
to begin with a superposition of states:
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(
|0〉+ |1〉√

2

)(
|0〉 − |1〉√

2

)
Uf−→ (−1)f(0)

(
|0〉+ (−1)f(0)⊕f(1) |1〉√

2

)(
|0〉 − |1〉√

2

)
. (101)

– f(0) ⊕ f(1) is encoded in the relative phase of the two states contributing to
the superposition.

– The relative phase can be measured, and so the value of f(0)⊕ f(1) has been
determined using only one application of the propagator Uf , that is only one
evaluation of the function f .

– The input eigenstates used in Equation (101) can be generated using Hadamard
gates on the eigenstates |0〉 , |1〉.

– After having applied the propagator Uf another pair of Hadamard gates can
be used to convert the superpositions back into eigenstates which encode the
desired result.

• Quantum circuit for solving Deutsch’s problem:

|0〉 H
Uf

H |f(0)⊕ f(1)〉

|1〉 H H |1〉

Simulating Quantum Systems
Time Evolution of a Quantum Spin Model

• The TFIM Hamiltonian is presented in Eq. (90).

• For the time evolution on a quantum compjuter we still have to use a Trotter
decomposition just like in the classical case.

• We only need N qubits instead of 2N complex numbers in a classical code and only
O(N) instead of O(2N ) operatiions are required.

Adiabatic state preparation

• Adiabatic theorem: A physical system remains in its instantaneous eigenstate if a
given perturbation is acting on it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian’s spectrum

• Implement time evolution under the unitary operation exp{−iHt} to prepare ground
state of quantum system

– Quantum computer can only do unitary operations, so using the power method
or Lanczos algorithm for this task is not feasible
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• Start with HamiltonianH0, of which the ground state is known; the ground state of
an unknown Hamiltonian Hf is found by and adiabatically interpolating between
H0 and Hf with

H(t) = (1− t

tf
)H0 +

t

tf
Hf , (102)

and by choosing tf long enough (exponentially small errors)

–

tf � O(min
t

∆(t)−2), (103)

∆(t) = E1(t)− E0(t) (104)

• Landau-Zener Problem: the probability for a diabatic transition, i.e., probability
for not ending in the ground state is given by

P = exp{−2πΓ} , (105)

with Γ = ε2/(2~v). Choose v � ε2/2 = ∆2/8 to have an exponentially small error
probability P

Indistinguishable Particles: Fermions and Bosons
Bosons
• General many-body wave function has to be symmetric:

Ψ(S) = S+ψ(q1, . . . ,qN ) ≡ NS
∑
p

ψ(qp(1), . . . ,qp(N)) , (106)

where the sum goes over all permutations p of N and NS is a normalization factor.

Fermions
• General many-body wave function has to be asymmetric:

Ψ(S) = S+ψ(q1, . . . ,qN ) ≡ NA
∑
p

sign(p)ψ(qp(1), . . . ,qp(N)) , (107)

where the sum goes over all permutations p of N and NA is a normalization factor.

– Consequence of the antisymmetrization:

ψ(q1,q2) = Φ(q1)Φ(q2) =⇒
Ψ(q1,q2) = ψ(q1,q2)− ψ(q2,q1) = Φ(q1)Φ(q2)− Φ(q2)Φ(q1) = 0 ,

i.e., no two fermions can be in the same state as a wavefunction
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Fock Space
• Hilbert space describing the many-body system with N = 0, 1, . . . ,∞ particles is

called the Fock space:

H =
∞⊕
n=0

S±H⊗N , (108)

where H is the Fock space,H is a single-particle Hilbert space andH⊗N N -particle
Hilbert spaces; S+ is the symmetrization operator used for bosons and S− the
antisymmetrization operator used for fermions

• Single-particle Hilbert space H is spanned by the basis {|Φ1〉 , . . . , |ΦL〉} consisting
of L single-particle wave functions |Φ〉i

• Wave function of state |n1, . . . , nL〉 is given as symmetrized and normlaized prod-
uct of single-particle wave functions

– ni is the number of particles occupying the ith state

∗ For bosons: ni ∈ N≥0
∗ For fermions: ni ∈ {0, 1}

– |1, 1〉 means that a single particle occupies state 1 and another single particle
occupies state 2

Slater Determinant

• Describes the wave function of a multi-fermionic system

• Antisymmetrized and normalized product of N single-particle wave functions Φi

is given by the Slater determinant

S−
N∏
i=1

Φ(qi) =
1√
N !

∣∣∣∣∣∣∣
Φ1(q1) . . . ΦN (q1)

...
...

Φ1(qN ) . . . ΦN (qN )

∣∣∣∣∣∣∣ . (109)

– Note: fermionic many-body wave function is a linear superposition of many
Slater determinants

Creation and Annihiliation Operators
• The L basis functions |Φ〉i factor into:

– L/(2S + 1) orbital wave functions f(qi)

– 2S + 1 spin wave functions |σ〉, where σ = −S,−S + 1, . . . , S

• Annhilation operator: ai,σ |Φ〉j = δij |0〉
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– σ is the spin index; i is the orbital index

• Creation operator: |Φ〉i = a†i,σ |0〉

• Basis state |n1, . . . , nL〉 for bosons in the occupation number basis can be expressed
using creation operators:

|n1, . . . , nL〉 =

L∏
i=1

(a†i )
ni |0〉 = (a†1)

n1 · · · · · (a†L)nL (110)

Quantum Monte Carlo
Path Integral Monte Carlo
• Goal: Permit to calculate static properties of systems of Bosons at thermal equilib-

rium by means of Monte Carlo methods using path integrals

• Non-relativistic Hamiltonian:

Ĥ = T̂ + V̂ = − ~2

2m

N∑
i=1

∆i + V (R) . (111)

• The static properties of a quantum many-body system in thermal equilibrium are
obtainable from the thermal density matrix exp{−βĤ}

– Expectation value:

〈Ô〉 = tr
(
Ô exp{−βĤ}

)
/Z (112)

– Partition function Z:

Z = tr
(

exp{−βĤ}
)

(113)

• Thermal density matrix in coordinate representation:

ρ(R,R′, β) = 〈R| exp{−βĤ} |R′〉 (114)

– Partition function Z in coordinate representation:

Z(N,T, V ) =

∫
ρ(R,R, β) dR (115)

– Product property of the density matrix:

exp{−(β1 + β2)Ĥ} = exp{−β1Ĥ} exp{−β2Ĥ} (116)

⇔ ρ(R1,R3, β1 + β2) =

∫
ρ(R1,R2, β1) ρ(R2,R3, β2) dR2 (117)
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• Problem: ρ(Rj ,Rj+1) are generally unknown

– Solution: Short time / high temperature approximation using

τ =
β

M
=

1

kBTM
(118)

with a large M

– With this approximation ρ(Rj ,Rj+1) we get a multi-dimensional integral of
known functions

• Density matrix at β is the same as the product of M density matrices at the inverse
temperature τ = β/M :

exp{−βĤ} =
(

exp{−τĤ}
)M

, (119)

with τ being the time step

– In coordinate representation:

ρ(R1,RM+1, β) =

∫
. . .

∫
dR2 . . . dRM (120)

ρ(R1,R2, τ) . . . ρ(RM ,RM+1, τ) (121)

• The coordinate representation of the density matrix is psoitive definite; it is known
that many-variable integrals of positive functions can be calculated efficiently by
means of Monte Carlo methods

• Primitive approximation: neglect all terms beyond the one which is linear in τ

exp{−τ(T̂ + V̂ ) + τ2/2 [T̂ , V̂ ] + . . . } = exp{−τ T̂} exp{−τ V̂ } (122)

– In the limit of a large Trotter number M Eq. (119) remains exact if we use
the primitive approximation, which is guaranteed by the Trotter formula:

exp{−τ(T̂ + V̂ )} = lim
M→∞

[exp{−τ T̂} exp{−τ V̂ }]M (123)

• Using the primitive approximation, we arrive at the following dN(M−1)-dimensional
integral:

ρ(R1,RM+1, β) ∼=
∫
. . .

∫ M∏
j=2

dRj

M∏
j=1

(
ρfree(Rj ,Rj+1, τ) exp{−τV (Rj)}

)
,

(124)

where

ρfree(R,R′, τ) ≡ 〈R| exp{−τ T̂} |R′〉 (125)
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– The Trotter formula guarantees that in the limit M → ∞ this is an exact
equation

– If M is large but finite, Monte Carlo can be used to evaluate the integral

– The partition function is given by

Z(N,V, T )ρ(R1,R1, β) =∼=
∫
. . .

∫ M∏
j=1

dRj

M∏
j=1

(
ρfree(Rj ,Rj+1, τ) exp{−τV (Rj)}

)
(126)

Figure 1: Definitions regarding PIMC. System configuration: set of the dNM coordinates
R1, . . . ,RM . Time-slice: j-th term of a system configuration; contains the dN
coordinates of theN particles at imaginary time (j−1) τ . World line: the world
line i is the set of coordinates describing the path of the particle i in imaginary
time, i.e., {ri1, . . . , rij , . . . , riM}. Beads: the M components of a world line

[1]

• Feynman’s mapping of a quantum system to a classical system consisting of poly-
mers

– Partition function of a classical system of polymers

– Polymer is a necklace of beads interacting as if connected by ideal springs

– Primitive approximation: beads within the same time slice j interact via in-
terparticle potential v(r)

∗ Higher order approximations possible

• The partition function shown in Eq. (126) is not symmetrical under particle
exchange, so it holds only for distinguishable particles. Problem: Bosons and
fermions are indistinguishable
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– Symmetrize the density matrix by summing over all possible permutations

– Sign problem: In the case of fermions, the Fermi partition function would lead
to an exponentially small signal to noise ratio going to large N and small T
due to alternating + (for even permutations) and − (for odd permutations)
signs in front of each term

Path Sampling Methods

• Detailed balance condition: Let P (X,X ′) be the probability to transition from
configuration X to X ′; then, if the transition matrix P (X,X ′) satisifies

π(X)P (X,X ′) = π(X ′)P (X ′, X) , (127)

the random walk samples points with probability π(X) = w(X)/Z, where w(X) is
the weight of the state X and Z the partition function

• Metropolis algorithm:

1. Propose transition from X to X ′ with an arbitrary probability T (X,X ′)

2. Acceptance / rejection stage: accept transition proposal with probability

A(X,X ′) = min(1, χ(X,X ′)) , (128)

where

χ(X,X ′) =
π(X ′)T (X ′, X)

π(X)T (X,X ′)
(129)

Diffusion Monte Carlo
• Goal: study the ground-state properties of quantum systems, i.e., simulate many-

body systems at zero temperature. When applied to bosons, diffusion Monte Carlo
(DMC) provides the exact result for the ground-state energy

• DMC is based on the solution of the time-dependent Schrödinger equation written
in imaginary time:

∂

∂β
Φ(R, β) = ĤΦ(R, β) , (130)

where β = it/~

• The solution of Eq. (130) is

Φ(R, β) = exp{−βĤ}Φ(R, 0) (131)
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• If we expand Φ(R, β) on the basis of the eigenstates Φn(R, β)

Φ(R, β) =
∞∑
n=0

cnΦn(R, β) =
∞∑
n=0

cn exp{−Enβ} , (132)

we get that in the long time limit β →∞ Eq. (132) reduces to

Φ(R, β) = c0Φ0(R) exp{−E0β} , (133)

meaning that the contribution of the ground state dominates the sum in Eq. (132)

Electronic Structure of Molecules and Atoms
Electronic Structure Problem
• Electronic structure problems arise from the Born-Oppenheimer approximation:

the nuclei of atoms are so much heavier than the electrons that we can view them
as classical particles and can consider them as stationary for the purpose of calcu-
lating the properties of electrons; the Hamiltonian operator for the electrons thus
becomes

H =
N∑
i=1

(
− ~2

2m
∇2 + V (ri)

)
+
∑
i<j

e2

|ri − rj |
, (134)

where the potential of the M atomic nucleai with charges Zi e at the locations Ri

is given by

V (r) = −e2
M∑
i=1

Zi
|Ri − r|

(135)

Basis Functions
Electron Gas

• The electron-electron interactions are completely neglected, i.e., V (ri) = 0∀i in
Eq. (135)

• Ideal choice for basis functions are plane waves

ψk(r) = exp{−ikr} (136)

Atoms and Molecules

• Slater-Type-Orbitals (STO): consist of a product between a radial (R(r)) and an-
gular wave function (Yl,m(θ, φ))
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– Advantage: these wave functions have the correct asymptotic radial depen-
dence and the correct angular dependence

– Disadvantage: the matrix elements of the Hamiltonian do not have closed
form solutions

• Gauss-Type-Orbitals (GTO): use Gaussian functions

– Advantage: the matrix elements of the Hamiltonian have closed form solu-
tions, since Gaussians can be easily integrated

– Disadvantage: Non-orthogonal

Electrons in Solids

• Use linear augmented plane waves (LAPW): smoothly cross over from localized
wave function behaviour near the nuclei to plane waves in the region between the
atoms

The Hartree-Fock Method
• The Hartree-Fock approximation is based on the assumption of independent elec-

trons

• Ansatz: N -particle wave function is a Slater determinant of N single-particle wave
functions:

Φ(r1, σ1; . . . ; rN , σN ) =
1√
N !

∣∣∣∣∣∣∣
Φ1(r1;σ1) . . . ΦN (r1;σ1)

...
...

Φ1(rN ;σN ) . . . ΦN (rN ;σN )

∣∣∣∣∣∣∣ . (137)

– The orthogonal single-particle wave functions Φn are chosen such that the
energy is minimal

• Hartree-Fock method :

1. Hartree-Fock wave function (Slater determinant) can be written in second
quantized form

|Φ〉 =
∏
µ,σ

c†µσ |0〉 , (138)

where c†µσ is orthogonal and creates an electron in the orbital φµ(r, σ)

2. Expand c†µσ in terms of creation operators â†nσ, which are not necessarily or-
thonormal:

c†µσ =

L∑
n=1

dµnâ
†
nσ (139)

where â† can be a STO or GTO, with σ being the spin and n being the orbital
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3. Minimize the energy E0 by changing the dµσ under the condition that the
|Φ〉µ are normalized; use Lagrange multipliers to enforce the normalization
constraint

4. The result is a generalized eigenvalue problem of the form

A[x]x = λBx , (140)

where A is the Fock matrix, B the overlap matrix and λ the eigenvalue; A
depends on the solution x (self-consistent field theory)

– Eq. (140) is solved iteratively until convergence to a fixed point is achieved

Density Functional Theory
• Many-body wave function living in R3N is replaced by the electron density, which

lives in R3

• Compared to the Hartree-Fock method, DFT could be an exact theory, if the exchange-
correlation functional would be known

• Hohenberg-Kohn theorems:

1. The ground state energy E0 of an electronic system in an external potential
V is a functional of the electron density ρ(r):

E0 = E[ρ] =

∫
d3rV (r)ρ(r) + F [ρ] , (141)

with a universal functional F

2. The density of the ground state wave function minimizes the functional E0

shown in Eq. (141)

• DFT:

1. Start with Ansatz

F [ρ] = Eh[ρ]︸ ︷︷ ︸
Hartree term

+

Kinetic term︷ ︸︸ ︷
Ek[ρ] + Exc[ρ]︸ ︷︷ ︸

Exchange-correltation term (unknown)

(142)

– Eh is given by the Coulomb repulsion between two electrons

– Ek is the kinetic energy of a non-interacting electron gas with the same
density

– Exc is the unknown contribution

2. To calculate the ground state density we have to minimize the energy given
in Eq. (141):

∂E[ρ] = 0 (143)
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Local Density Approximation

• Approximate the potential vxc arising from the functional Exc[ρ] by replacing vxc
with the potential of a uniform gas with the same density. In this case, we ignore
the fact that the functional Exc may depend on ρ,∇ρ,∇2ρ, dots and assume that it
takes the local density:

Exc[ρ](r) = ELDA(ρ(r)) (144)

Car-Parinello Molecular Dynamics
• Atomic nuclei are propagated using classical molecular dynamics, but the elec-

tronic forces which move the nuclei are estimated using DFT

Quantum Monte Carlo Algorithms for Lattice Models
World Line Representations for Quantum Lattice Models
• Problem: Monte Carlo method cannot be directly applied except in the classical

case where the Hamiltonian H is diagonal

– The partition function is an operator expression (and not a simple sum over
classical configurations):

Z = tr (exp{−βH}) (145)

• Solution: map the quantum system to an equivalent classical system:

Z = tr (exp{−βH}) =
∑
c

w(c) (146)

– The magnetization for example is given by

〈m〉 =
∑
c

m(c)P (c) , (147)

where P (c) = w(c)/Z

A Spin-1/2 in a Magnetic Field
• Hamilton operator for a single quantum mechanical spin-1/2 in a longitudinal

magnetic field h and transverse magnetic field Γ:

H = Hz +Hx = −hSz − ΓSx , (148)

where Si are the Pauli matrices with a given basis set {|1/2〉 , |−1/2〉} in which the
z-component of the spin operator is diagonal, however H is not diagonal
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Discrete Time Path Integrals

• Use discrete imaginary time steps δτ = β/M

• Approximate the quantum transfer matrix using the lowest-order Taylor expansion
for the exponential function:

exp{−∆τH} = 1−∆τH+O(∆2
τ ) (149)

• In the discrete time path integral formulation, the partition function Z in Eq. (145)
is evaluated by rewriting the trace as a sum over all basis states |i〉:

Z = tr (exp{−βH}) = tr
(
exp{−∆τH}M

)
= tr

(
[1−∆τH+O(∆2

τ )]M
)

(150)

=
∑

(i1,...,iM )

〈i|1 U |i2〉 〈i|2 U |i3〉 · · · · · 〈i|M U |i1〉+O(∆τ ) (151)

– The expression in Eq. (151) is identical to the partition function of a one-
dimensional chain of classical Ising spins σi = ±1 of length M with periodic
boundary conditions σM = σ1

– Any d-dimensional Ising model can be mapped to a (d+ 1)-dimensional clas-
sical Ising model

Continuous Time Path Integrals

• Modern world line QMC algorithm are based on a continuous time representation,
i.e., they work in the limit ∆τ → 0(M →∞)

– Number of spins M diverges as ∆τ → 0, however the average number of
domain walls between parallel spins remains finite =⇒ store the values of
the spins in the j-th domain (j = 1, . . . , n) and the location of the last spin of
the j-th domain

• The continuous time interpretation is obtained by integrating the continuous time
expression over all possible domain walls and summing over all possible number
of domain walls n
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