
3D Robotic Engine

Stephan Jud
me@steve.ch

Giuseppe Accaputo
ga@giu.me

Rapperswil, June 10, 2009



2



Abstract
In the field of robotics an efficient and fast planning of collision free routes
is essential to control parallel movements.
This document discusses algorithms and strategies for moving liquid han-
dling robots both efficiently and safe in a three dimensional space. An
approach for collision detection and resolution in real time is presented as
well as a path finding mechanism to traverse typical liquid handling plat-
forms. Additionally, an optimization to achieve higher traveling speeds
for robots is introduced.

3



4



Acknowledgments

Without the help and support of following people this Bachelor Thesis
would not have been possible. We would like to thank. . .

Joas Leemann . . . for many insightful discussions, giving valuable feed-
back and his time and patience

Hansjörg Huser . . . for accepting this Bachelor Thesis and for his help

Louis-Sepp Willimann . . . for his time and extraordinary useful hints
about splines

Rainer Kerkmann . . . for accepting the Thesis and provide office space

Our families . . . for the support and the good food

Our girlfriends . . . for love and for not asking questions why we were
working until late at night

5



6



Contents

I Management Summary 13

II Technical Report 19

1 Introduction 21
1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Collision Avoidance 23
2.1 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Path Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 3D Path Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Sweep Prune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Parallel Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Collision Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Necessary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Basic Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Function Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Device Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.5 Evading Axis Alternation . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.6 Safety Clearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.7 Route Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Realization 43
3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Engine Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Move Engine Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.3 Request Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.4 Path Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.5 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.6 Collision Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.7 Move Dispatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.8 Function Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.9 Motion Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.10 Unit Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7



CONTENTS CONTENTS

3.1.11 Move Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.12 Waypoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.13 Device Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.14 Move Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.15 Natural Cubic Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.16 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1 Axis Logic Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Time Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Active Evading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Dynamic Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.6 Run Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Algorithm Analysis 57
4.1 Dijktra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 A* Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Iterative Deepening A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Fringe Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Potential Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Object Viewer Tool 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Move Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Turn Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.3 Other Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Move Tool 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Define a Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.2 Auto completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.3 Controlling Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.4 Object View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Spline Tool 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.1 Define The Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.2 Toggle On and Off Content . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Browser Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5 Heuristic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.5.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.2 Usability Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8



CONTENTS CONTENTS

8 Conclusion 85

III Testing 87

9 Test Plan 89
9.1 Algorithm Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.1.1 Logical Map Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.1.2 Collision Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.1.3 Cubic Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.2 Unit Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.2.1 Metric Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.3 Spline Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.3.1 Browser Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.4 Parser Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.4.1 P-T01: Absolute Values . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.4.2 P-T02: Positive Relative Values . . . . . . . . . . . . . . . . . . . . . . 117
9.4.3 P-T03: Negative Relative Values . . . . . . . . . . . . . . . . . . . . . 117

10 Test Report 12.05.2009 119

11 Test Report 27.05.2009 123

12 Test Report 02.06.2009 129

IV Project Management 137

13 Software Development Plan 139
13.1 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.2 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.4 External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.5 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.6 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

13.6.1 Iteration Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
13.7 Work Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

13.7.1 Inception 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
13.7.2 Elaboration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.7.3 Elaboration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.7.4 Elaboration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
13.7.5 Elaboration 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.7.6 Construction 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
13.7.7 Construction 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
13.7.8 Construction 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.7.9 Transition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9



CONTENTS CONTENTS

14 Iteration Assessments 153
14.1 Inception 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
14.2 Elaboration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.3 Elaboration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
14.4 Elaboration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
14.5 Elaboration 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
14.6 Construction 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
14.7 Construction 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
14.8 Construction 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
14.9 Transition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

15 Risk Management 173
15.1 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
15.2 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

16 Requirements 179
16.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
16.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

16.2.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
16.2.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
16.2.3 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
16.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
16.2.5 Supportability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
16.2.6 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

17 Quality Management 183
17.1 Code Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
17.2 Document Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
17.3 Bug Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
17.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
17.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

17.5.1 NUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
17.5.2 FXCop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
17.5.3 CSharp Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

17.6 Coding Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
17.7 Guidelines for TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

18 Minutes and Meetings 187

V Personal Reports 199

VI Appendix 203

A Images 205
A.1 Path Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.1.1 Logical Map Traversal Example . . . . . . . . . . . . . . . . . . . . . . 205
A.2 Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.3 Collision Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

10



CONTENTS CONTENTS

Acronyms 217

Glossary 219

Bibliography 220

11



CONTENTS CONTENTS

12



Part I

Management Summary

13





Initial Situation

Tecan Schweiz AG produces liquid handling
platforms used for medicinal and biological
laboratory tests. Such a liquid handling plat-
form can be configured with multiple robotic
arms and equipment. Using the full capabil-
ities provided by the platform is essential to
minimize idle time and optimize through-
put. However, the existing solution shows
room for improvement.

The goal of this Bachelor Thesis was to
define new controlling algorithms for the liq-
uid handling platform which are able to plan
and execute parallel motion sequences.

The defined component had to support
any type of robotic arms but still take ad-
vantage of their intrinsic properties. Addi-
tionally, the integration of the component
into the current control software of Tecan
Schweiz AG had to be possible with little
effort.

The project was started by an individual
initiative of the team. It has been chosen as
Bachelor Thesis because of the interesting
domain and the foreseeable required inves-
tigations.

Procedure

During the project the Rational Unified Pro-
cess (RUP) has been used successfully to or-
ganize and plan iterations which were par-
titioned to two weeks each:

Inception

Start End Iteration

16.02.09 27.02.09 Inception 1

At the beginning of the Inception phase
the required infrastructure like Subversion
server and Trac environment has been set
up, enabling a solid and convenient work-
ing environment for the team. Additionally,
a first version of the Software Development
Plan describing the iterations in detail has

been created. Furthermore, meetings were
held with stakeholders to gather information
about the different objectives.

Elaboration

Start End Iteration

02.03.09 13.03.09 Elaboration 1
16.03.09 27.03.09 Elaboration 2
30.03.09 10.04.09 Elaboration 3
13.04.09 24.04.09 Elaboration 4

During the Elaboration phase relevant
algorithms were evaluated regarding the tar-
get system. Because it turned out that there
were no adequate ones, the development of
an environment specific algorithm which is
able to meet the demands was initiated.

Soon a first simple test environment was
created with a simulator and a textual in-
terface to the developed algorithm. This led
to a draft implementation which already in-
cluded an initial realization of the proposed
algorithm.

During this phase another requirement
for the algorithm emerged: Computed paths
should have smooth corners which would en-
able high traveling speeds. As a result, dif-
ferent strategies were evaluated which led to
the development of an approach using nat-
ural cubic splines with the designed algo-
rithms.

Construction

Start End Iteration

27.04.09 08.05.09 Construction 1
11.05.09 22.05.09 Construction 2
25.05.09 05.06.09 Construction 3

The Construction phase mainly consisted
of programming and testing tasks. Thanks
to numerous test cases which have already
been defined, a big number of improvements

15



and enhancements could be realized espe-
cially regarding path finding, collision avoid-
ance and resolution.

Transition

Start End Iteration

08.06.09 12.06.09 Transition 1

Finally, during the Transition phase the
code was extended to successfully pass exist-
ing test. Furthermore, all documents have
been reviewed and discussed with stakehold-
ers.

Project Management

An agile version of RUP has been success-
fully applied throughout the project. Since
a big part of the Bachelor Thesis consisted
mainly of research tasks, investing a high
amount of time in evaluation and research
in early stages paid itself off. Additionally,
keeping track of the progress with Iteration
Assessments turned out to be a good instru-
ment to keep all stakeholders up to date.

During the project maintaining an up-
to-date state of all the documents was em-
phasized. This was achieved with recurring
documentation reviews.

The Bachelor Thesis has shown that a
good and flexible project planning is very
important for the succeeding of a project.
Using RUP for this project was definitely
the right decision.

A maximum of 360 work hours per per-
son (720 work hours total) were available
for the project. A total of 726 hours were
planned, whereof 33 hours were reserved as
a buffer if work packages took more time
than expected. A total of 982 hours were
invested into the realization. The surplus of
256 hours resulted because the team realized
that a lot of work was required to complete
certain tasks but decided anyway that it was
worth it.

Meetings were held almost every week,
either with Joas Leemann or Hansjörg Huser.

The purpose of these meetings was to dis-
cuss the current project state, work pack-
ages and the created artifacts of the corre-
sponding iteration.

People

Hansjörg Huser is the adviser in authority of
the Bachelor Thesis. He ensured that formal
aspects were respected and helped improv-
ing the documentation thanks to his feed-
back.

Joas Leemann is the adviser provided by
the Tecan Schweiz AG and helped the team
with many discussions, answers to techni-
cal questions and gave lots of feedback to
various presented approaches and their im-
plementation.

Rainer Kerkmann is a project manager
at Tecan Schweiz AG and was responsible
for the approval of the project the team pro-
posed. He also was responsible for the setup
of the workspaces provided for the team in
offices of Tecan Schweiz AG in Männedorf.

Results

Due to the complexity of the problem it was
not possible to find an algorithm that could
fulfill the posed requirements. Therefore a
multilevel proceeding has been defined that
uses an incremental approach to solve the
given tasks:

Path Finding:

Collision Detection:

Path Optimization:

ns

Figure 1: Multilevel proceeding

16



In a first step the possible conflict states
are determined. Then, the shortest collision
free path is calculated. Finally, the path is
optimized for the robot. This reduction of
complexity and size turned out to be essen-
tial to achieve fast calculation times.

To ensure smooth path guidance the gen-
erated waypoints are interpolated using a
natural cubic spline. This enables the robot
to follow the computed route with a con-
stantly high velocity.

The developed approaches have been im-
plemented in a prototype and proved them-
selves to be a realistic and efficient realiza-
tion to control various types of robotic arms
in a liquid handling platform. The actual
collision avoidance logic, excluding input val-
idation and data classes could be realized in
just 360 lines of code. Counting the lines of
all created software results in 3300 lines of
code.

Additionally, various tools have been de-
veloped to visualize the implemented algo-
rithms. They have been implemented using
either .NET 3.5, WPF and Visual Studio
2008 or JavaScript, HTML and CSS.

This means the goals could be achieved.
A set of tools is available to support further
development of the current implementation.
Additionally, a few interesting approaches
have been figured out and described so they
can be implemented by Tecan Schweiz AG
at a later time.

The implemented solution fulfills the real-
time requirements of Tecan Schweiz AG.

Collision Detection

Parsing

Collision Resolution

Splining

Dispatching

3 µs/devices

4 µs/request

0.8 µs/obstacle

3 µs/waypoints

n/a

Figure 2: Throughput measurements with
five robots in the environment

Perspective

The solution is advanced to the extent so
that Tecan Schweiz AG can use it as a foun-
dation for further developments. An inte-
gration into the existing framework could be
achieved easily.

However, not all proposed enhancements
could be implemented. They have been ex-
tensively described though and might be re-
alized at a later date.

17



18



Part II

Technical Report

19





Chapter 1

Introduction

1.1 Environment

Tecan Schweiz AG produces liquid handling
platforms which can be combined with a
wide range of robotic arms. The platform
is actively managed by an application which
runs on a connected personal computer. The
program controls the platform by transmit-
ting control commands to the corresponding
devices which then apply the movement.

A reliable and efficient way to control the
interaction of such robotic devices is essen-
tial to fully utilize the system’s mechanical
capabilities. Furthermore, minimizing idle
time and duration of robotic operations are
important aspects to increase overall system
throughput.

For more information about the project
this thesis is written including the exact con-
ceptual formulation, refer to the Software
Development Plan on page 139.

1.2 Goal

This Bachelor Thesis shall define the design
of a software component which is able to
compute and perform moves of robotic de-
vices inside the target system based on move
requests received from other components.

This includes a collision avoidance mech-
anism which automatically resolves collision
situations should they be detected. Addi-
tionally, the system must comply with per-
formance characteristics given due to lim-
ited space and time resources.

The said component shall be designed

and realized in a generic way where sup-
ported devices do not have path planning
logic implemented on their own. Its bound-
aries are defined as shown below.

Application sends move request

Robotic  Engine computes collision free path

Motion Controllers   apply vector

MC  A MC  B MC  C

The thesis is split into the following three
parts:

Research A path finding algorithm has to
be chosen and extended so it matches the re-
quirements. Additionally, an efficient colli-
sion detection and resolution algorithm has
to be developed for the target system which
should perform efficiently in a three dimen-
sional space.

Design Once all required algorithms have
been defined, a generic engine which fits into
the existing software framework shall be de-
signed. It must be device independent and
provide a uniform interface to upper layers.

Implementation A move engine shall be
implemented according to the previously de-
veloped design.

21



1.3. SCOPE CHAPTER 1. INTRODUCTION

1.3 Scope

The designed system can assume correct be-
havior of actions performed on the system as
well as the correctness of physical properties
defined in the device specifications. It must
reach prototype quality, demonstrating fea-
sibility and correctness of the developed ap-
proaches.

Details regarding exact technical realiza-
tion of Tecan internal components are omit-
ted in justifications.

22



Chapter 2

Collision Avoidance

This chapter handles the first of three
fragments of the Thesis. It represents the
research part. Algorithms and approaches
regarding collision avoidance are described
and evaluated.

Collision avoidance interprets move re-
quests and calculates a collision free path for
the corresponding object. Because the prob-
lem of collision avoidance cannot be solved
by just one algorithm or strategy1, it must
be split into sub-problems, each requiring a
different approach.

Three such sub-problems have been iden-
tified and throughout this chapter following
nomenclature is used for them.

Path Finding is used to traverse
through an environment, mak-
ing use of Collision Detection to
determine which ways are clear
to move through and finally us-
ing Collision Resolution to pass
through complex regions where
interaction with other objects is
required.

The main approach is to provide a graph
of interconnected abstract waypoints gener-
ated according to the physical capabilities of
involved components and current environ-
mental situation. After such a graph has
been created, it is traversed to determine
whether the target position can be reached
and if so, which route leads to the least time
consumption.

1For more information refer to chapter 4

move Dev2 x=32;

The requested move is 

validated and passed on

A net of waypoints is

generated

Output is a graph of 

connected waypoints

Collision Detection

Collision Resolution

Path Finding

Execution

The graph is traversed to 

find the shortest path

 

Waypoints are sent to

the motion controller

The controller performs 

the action

23



2.2. PATH FINDING CHAPTER 2. COLLISION AVOIDANCE

2.1 System Properties

The Bachelor Thesis targets a very specific
platform. Highlighting its restrictions and
main properties allows the development of a
specialized algorithm which performs more
efficiently than a generic one due to a more
limited solution space. Relevant properties
for collision avoidance on liquid handling plat-
forms are listed below.

• All objects in the system are known at
runtime.

• All movable objects in the system can
be controlled by software.

• When an unmovable object changes
its location and/or size, the system
will receive a notification about this
event.

• Interactions may occur at unforesee-
able moments initiated by external ac-
tors. However, this kind of events is
rather rare.

• The number of independent moveable
objects is limited to ten per environ-
ment.

• Moveable objects are built in a cubicle
shape and do not have round surfaces.

• The interaction space is inside a cube.
There may exist interaction points at
system boundaries for interoperability
with other platforms though.

• The components inside the environ-
ment are normally placed close to each
other, to minimize traveling time.

• The workflow depends on many exte-
rior influences and is not determinis-
tic. Thus, movements cannot be pre-
computed.

• There can be an arbitrary number of
robot types on the system.

• Moveable objects have following prop-
erties

– Objects are mounted on tracks

– Objects do collide when mounted
on the same track and residing at
the same position

– Axes x,y and z define their range

– Axis ranges have no gaps

– Move properties are equal on ev-
ery point on the axis

– Objects can move independently
and concurrently on every sup-
ported axis

– Objects can have subobjects

– The range of subobjects is rela-
tive to their parents’

2.2 Path Finding

There are various ways to compute routes
through a system avoiding obstacles. Rele-
vant algorithms are listed below. For a de-
tailed description refer to chapter 4.

Djikstra’s Algorithm A graph traversal
algorithm which searches the shortest
path between two nodes in a graph.

A* Search A best-first graph search algo-
rithm that finds the path with least
cost to a target. It uses heuristics to
move through the environment.

Iterative Deepening A* A variant of A*
which uses less memory because it does
not use lists to keep track of visited
nodes.

Fringe Search A search algorithm based
on Iterative deepening A* (IDA*) which
eliminates some disadvantages and usu-
ally performs faster because of an in-
cremental approach.

Potential Fields All objects are expanded
with a force comparable to magnetic
ones. The device is attracted by the
target’s force. During the movement
it avoids obstacles by being repulsed
by them.

24



CHAPTER 2. COLLISION AVOIDANCE 2.2. PATH FINDING

2.2.1 3D Path Finding

The listed path finding algorithms perform
in a two dimensional space containing both
obstacles and free cells or nodes.

As mentioned in section 2.1, path find-
ing must be performed in a three dimen-
sional space. This requirement drastically
increases the complexity of the problem as
an order of magnitude more calculations are
required. Straightly applying the path find-
ing algorithms is not feasible anymore be-
cause of the sheer amount of cells this would
create.

Additionally, split the environment into
cells raises another problem: How should
the cell dimensions be determined? If they
are too small, many unnecessary checks are
required for objects although they could be
represented in bigger cells more efficiently.
Also, the algorithm is required to maintain a
bigger stack of decisions to turn back once a
dead end has been detected. If, however, the
cell sizes are too big, small items might slip
through collision detection, possibly causing
collisions.

Binary Cell Splitting

One possible solution is to dynamically ad-
just the cell size depending on the obstacles
inside the area (Figure 2.1). The path algo-
rithm must be extended to take those dif-
ferent sizes into account though.

But also with this approach problems
arise when applied to a three dimensional
space. Due to the characteristics of the tar-
get environment which contains many ob-
jects with different sizes, a large amount of
cells gets generated which leads to many un-
necessarily calculated paths.

Additionally, cell dimensions need to be
re-adjusted when an obstacle moves into ar-
eas with different cell dimensions. This re-
quires re-dimensioning cells while the search
is being performed.

Figure 2.1: Cells are divided until the ob-
stacle (blue) can be represented within the
map in the desired precision. The result-
ing matrix will be used by the path finding
algorithm to calculate the shortest path.

Figure 2.2: Scene with connected way-
points between origin (green) and destina-
tion (red).

Obstacle Based Splitting

Another approach is to build a logical map
of possible waypoints (Figure 2.2).

By keeping waypoints abstract, the trav-
eled space can be reduced, requiring fewer
computations.

Waypoints can be placed at positions the
device is likely to pass (between start and
target position), at turning points of obsta-
cles. To move a device the required trans-
lations between the elements of the optimal
waypoint-chain can be calculated and be ap-
plied.

Obviously, this results in removing paths
from being detected by the path finding al-
gorithm. However, because of the drasti-
cally reduced number of calculations the al-
gorithm has to perform, this is preferable
as omitted routes can be added in further
search iterations.

This approach implies the actual move
operations are hidden from the algorithm
which traverses the logical map. A “hop
count” cost function would lead to wrong
results. To correct this, the edges must rep-

25



2.2. PATH FINDING CHAPTER 2. COLLISION AVOIDANCE

resent the cost of the underlying operation
and the algorithm must take those different
edge costs into account.

Finding the shortest path in that map
leads automatically to the shortest travel
time for the moving object in the target en-
vironment.

Due to this reduction of potential sce-
narios which need to be evaluated by the
path finding algorithm, expanding the so-
lution space to three dimensions does not
result in exponentially more computations.

Map Creation Waypoints represent po-
sition and time at which a device can pass
an obstacle. The time aspect must be in-
cluded as solely generating waypoints based
on the obstacles in the environment would
not include dynamic behavior.

An initial map can be calculated from
the start to the end position. If it turns out
that there is no collision free path, further
waypoints must be added to the map in or-
der to avoid the obstacle.

However, obstacles can change their sizes
or positions while the device is moving. This
dynamic behavior must be taken into ac-
count as it influences which waypoints are
available.

Thus, waypoints must be generated it-
eratively keeping track of the time passed
since the move started because the distance
and even the existence of connected way-
points may change during run time. This
means the map must be built up lazily.

As edges already represent the time con-
sumed, the current time can be represented
as accumulated costs of already traversed
graphs.

Map States Scenarios which might be en-
countered by the algorithm while traveling
through such a map are listed below2.

1. When no nodes are connected, the tar-
get position cannot be reached:

2Red squares indicate the current, green ones the
target position. Gray squares represent nodes which
may be traversed

2. When the start node equals the target
position, no move is required:

3. If the device can reach its target po-
sition by moving straight in its direc-
tion without any modifications of its
dimensional properties, the algorithm
can return a simple graph whose only
edge represents all costs of the move:

4. The device cannot move straight to its
target position. With help of Colli-
sion Resolution the algorithm builds
up a map containing logical positions
the device can reach. If start and end
point are connected in any way, the
device can reach its target. However,
the costs represented by edges must be
considered to ensure the fastest route
is chosen:

5. If the start and end point cannot be
connected together it means that the
target position is not reachable:

While appending graphs to nodes within
the map, obstacle for obstacle has to be re-
solved. This greedy approach forces the al-
gorithm to keep track of decisions made in

26



CHAPTER 2. COLLISION AVOIDANCE 2.3. COLLISION DETECTION

order to resolve dead ends. Also, the con-
sumed time must be maintained as it influ-
ences which graphs are added or removed to
a node.

A map traversal example can be found
in appendix A.1.1 on page 205.

The described approach frees the algo-
rithm from handling dynamic obstacle sizes
and tracking other moving objects. Thus,
it can be implemented independently, in-
creasing modularity and separation of con-
cerns. The remaining problems are dele-
gated to other components - Collision De-
tection and Collision Resolution - which will
be described later in this chapter.

2.2.2 Conclusion

The path finding algorithms mentioned do
all work in a completely unknown environ-
ment. Because the main characteristics of
the environment in which the robotic arms
will interact are fairly clear, some general as-
sumptions can be made reducing path find-
ing computation. Thus, algorithms which
take environmental heuristics into account
will achieve better results and additionally,
can be fine tuned externally.

However, the algorithms listed cannot be
applied straightly to the problem because
of the four-dimensional solution space. A
preprocessing component is required which
reduces the collision avoidance problem to
an algorithm compatible format. Creating
a map of abstract waypoints is the most ef-
ficient way to achieve this.

2.3 Collision Detection

Collision Detection is the first essential com-
ponent for waypoint creation. Given speed,
acceleration and direction of a moving ob-
ject, it determines when it will collide with
other moving devices or obstacles.

All active and passive components3 in
3An active object is controllable by software

whereas a passive object is static and cannot be
moved by the system. External actors might still
change properties of a passive object though.

the system are known. Therefore, it is pos-
sible to predict when collisions will occur.

An efficient way to detect a collision be-
tween multiple objects is already available
[6]. This section discusses how that algo-
rithm can be applied to the target environ-
ment.

2.3.1 Sweep Prune

Basically, Sweep Prune[6] reduces the col-
lision detection problem to a sub-problem
for every axis involved. Those sub-problems
must be solved independently. The result
of a collision check is the sum of all those
sub-problems.

For the target environment (section 2.1)
all three Cartesian axes x, y, z are relevant
for collision detection. Applied to Sweep
Prune this means three lists, each describ-
ing which parts of an axis are occupied by
devices4 are required.

The sum of boundaries (Begin and End
of axis allocation) for every device d on axisa

must be stored in a list describing the axis’
occupation. Begin and end are calculated
according to the direction in which the col-
lision detection is performed.

alloca =


d1aB d1aE

d2aB d2aE

...
...

dnaB dnaE


A collision free move can now be defined

as a change of the moving objects in the
allocation lists where all other objects stay
in the same relative direction of the moving
object.

A special case occurs when the direction
cannot be determined, i.e. the checked ob-
ject resides at exactly the same position like
the moving one. If so, it must be ensured
that the relative position at initial and end
time stays the same.

4In this document the term Axis allocation is
used as equivalent.

27



2.3. COLLISION DETECTION CHAPTER 2. COLLISION AVOIDANCE

Example

Let’s consider axis x where a move on d2
is performed. Its current axis occupation is
described as 

d1x

d2x

d3x

d4x

d5x


If the occupation after the move is

d1x

d3x

d2x

d4x

d5x


it can be said that a cross over of d2 and
d3, hence at least one intersection occurred.
Thus, those two devices collide on axis x. If,
however, the occupation list is

d1x

d2x

d3x

d5x

d4x


no intersection or crossing occurred. The
crossing of d4 and d5 does not affect d2 as
no cross over it occurred.

Object Dimensions

In the previous section Sweet Prune has just
been described for punctual representations.
Applying it to objects requires additional
logic.

When just the most advanced point is
chosen for collision checks, an intersection
might occur anyway if the obstacle changes
its position after that point has been passed
and the device’s endpoint is still residing
within the obstacle’s area (Figure 2.3).

One approach to solve this problem is to
check both, the start and end point of a de-
vice at their passing moments. If the latter
cannot pass it indicates a moving obstacle.
In such a case, the order of checks may be

(a) t1:Valid (b) t2:Error

Figure 2.3: The axis allocation indicates
that the device is able to pass the obstacle
by applying the corresponding axis offset.
However, while the obstacle is being passed
by the device, the obstacle moves upwards
and causes a collision.

Figure 2.4: By using the device’s end as
synchronization point for an axis allocation
computation, the movement of the obstacle
can be taken into account. In this example
there are two possible evading solutions.

28



CHAPTER 2. COLLISION AVOIDANCE 2.3. COLLISION DETECTION

inverted to see whether the obstacle can be
passed anyway with a different offset.

Extending Sweep Prune so it takes into
account the object dimensions doubles the
number of points which must be checked
against. Obviously, the start point s1 has
to be checked against all other endpoints en

and its end point e1 must be checked against
the other obstacles starting points sn.

List Creation

The Sweep Prune lists can be created iter-
atively by querying the objects on an axis
sorted according to the lowest axis alloca-
tion start. The actual values stored may be
representing logical or absolute physical po-
sitioning values.

For the given environment

x0 x1
x2
x3 x4 x5 x6

x7
x8 x9

the axis allocation for x including all devices
on that axis at t0 is

x1, x6

x2, x3

x4, x5

x7, x8


By keeping the lists sorted, the number

of checks can be reduced down to the num-
ber of queries required by a binary search
on that list. After that, every point must
be evaluated until e1 is reached.

2.3.2 Parallel Pruning

The approach of Sweep Prune just works if
there is just one device moving at a time.
Multiple parallel moves cannot be modeled
as the comparison in the allocation lists hap-
pens before the move starts and the list gets

updated at the end of a move. Collision
checks of other devices will result in wrong
results because with this race-condition-like
behavior they do not use the actual position
of the already moving device.

There may be scenarios though, where a
collision test would indicate a collision be-
cause of overlapping axis allocations, but
the move would perform just fine as the axis
allocation intersection would not occur in
the same time (Figure A.8).

Thus, parallel moves cannot be imple-
mented with the Sweep Prune described.

Therefore, the approach described above
has to be extended to determine the axis
allocation at a given time.

A function

alloc(axis, t∆)

is introduced, allowing to query the axis al-
location for all involved axis at every future
moment t∆.

With such a function parallel movements
can be modeled. This would require the
caller to verify the method’s result for ev-
ery step a device takes during a move: A
procedure which is highly inefficient and im-
possible to solve properly as the step range
to be checked is theoretical infinite small.
By increasing the step width however, small
objects could slip through collision checks.

This problem comes from using absolute
destination values when describing an axis
allocation and would not exist if a value
would be used which describes the move pro-
cess instead of defining its final position.

To solve this, a new function is intro-
duced: Every device carries a function

fma

for every axis and subaxis a describing the
movement of a device. The function is con-
sidered active until the device reached its
end point.

To check for collisions, the caller can eval-
uate possible relevant functions of other de-
vices to determine whether they have an in-
tersecting solution space, and if so, at which

29



2.3. COLLISION DETECTION CHAPTER 2. COLLISION AVOIDANCE

t∆ this intersection occurs. The evaluation
could be realized with an equation system
where all fma of obstacle candidates and
the moving object’s fma are evaluated to
see whether the solution is beyond the de-
sired target position.

With this approach alloca needs to be
called just once for intersecting function re-
sults.

This approach requires the function to
be monotonic though. If a device move can-
not be described with a monotonic function
it must be split into several monotonic ones
whose evaluation will be delegated by the
origin function fma. It must ensure that
the right function for a given t∆ is called.

If the collision checks succeed, it means
that the move can be performed and no ad-
ditional counter measures to avoid a colli-
sion are required.

Allowing axis allocation computations at
every desired moment undermines the pur-
pose of Sweep Prune which uses sorted allo-
cation lists for speedup because sorted lists
would need to be created at every t∆. How-
ever, Sweep Prune checks can still be used
for static objects reducing the overall num-
ber of function evaluations.

30



CHAPTER 2. COLLISION AVOIDANCE 2.4. COLLISION RESOLUTION

2.4 Collision Resolution

Collision Resolution is the second essential
component for waypoint creation. In the
previous section the basic principle of de-
tecting collisions between objects has been
discussed. Once such a state has been iden-
tified, actions must take place to avoid a real
collision. There are two options:

Change Speed The speed of one or both
moving devices is changed so the axis
allocation during the computed colli-
sion time does not intersect.

Change Path If an object collision cannot
be avoided by just changing the speed
of devices, the planned path of one
or both devices must be changed in a
manner that the axis allocation does
not intersect at any time with other
devices during the move.

2.4.1 Necessary Data

To determine which one or which combina-
tion of those actions will result in minimal
execution time, more data is required than
just the physical size of objects like in sec-
tion Path Finding. For every axis and sub-
axis a two sets of new attributes are intro-
duced:

kinematica

containing information about the kinematic
capabilities of an axis a

• Range

• Maximum and minimum speed

• Maximum and minimum acceleration
factor

and
statea

containing information about the state of an
active move on axis a

• Move function

• Acceleration function

whose values may change during execution
time.

2.4.2 Basic Procedure

With the axis allocation intersection mecha-
nism described in section 2.3, the system can
determine exactly at which t∆ a collision
would occur. Once this moment has been
computed, the collision resolution mecha-
nism fetches all relevant statea at t∆ and de-
termines according to kinematic and state
of every axis involved which actions would
be necessary in order to avoid a collision.
The solutions computed represent new way-
points.

The actual representations of those at-
tributes may be realized in different ways
which influence the algorithmic and calcula-
tive complexity of a collision resolution sys-
tem considerably.

2.4.3 Function Resolution

Representation

One approach is to model the axis alloca-
tion for every value in axis range with a
function where statea.size

2 is added to each
side of a function value (Figure 2.5). This is
repeated for every axis where collision reso-
lution must be supported on.

The obstacle which would collide with
the moving device can be applied to its func-
tions. The results represent the exact posi-
tions on the corresponding axis at which the
collision with the obstacle would occur (Fig-
ure 2.6).

It might seem obvious that the range
will always have the same function graph.
This does not count for devices with non
proportional axis allocation characteristics.
Non linear and complex movements can be
modeled5, may require additional functions
though.

Once the intersection points between the
function graph and the obstacle have been

5Refer to Figure A.6 and Figure A.7 on page 207
for examples.

31



2.4. COLLISION RESOLUTION CHAPTER 2. COLLISION AVOIDANCE

oa

xa

Figure 2.5: Graph of a function which cal-
culates the axis allocation for axis a.
The dashed line represents the actual func-
tion graph, the green area is the axis alloca-
tion for a parameter within axis range.
oa represents the supported axis range. Its
value is in a normalized form between [0, 1].
xa represents the environment’s axis range.

oa

xa

Figure 2.6: A colliding obstacle can be ap-
plied to the function to determine which al-
ternative positions a device could take in or-
der to avoid the collision.

calculated (Figure 2.7), the normalized off-
sets oa ∈ [0, 1] is known which could be ap-
plied to axisa in order to bypass the obsta-
cle.

Note that the “relevant state” mentioned
above does also include obstacles whose di-
mension embraces the moving device as they
might reduce the solution space of the reso-
lution evaluation.

Calculation

The function is evaluated for every axis on
which a collision would occur. The differ-
ent results comply with the normalized off-
set a device has to apply in order to avoid
the obstacle. With kinematica of the corre-

oa

xa

o1

x1

o2

x2

Figure 2.7: Once the colliding obstacle
was applied to the function, its intersection
points are known to the system. In this
example the device on axis a could move
within [0, oa1) and (oa2, 1], without collid-
ing with the obstacle.

sponding device the cost for every alterna-
tive is calculated. If such an alternative can
be found, the obstacle can be avoided.

Subaxes

The robotic arms in the target environment
are normally composed out of multiple sub-
roboters which are connected to each other
(For examples refer to Figure A.9 and Fig-
ure A.10 on page 209).

This circumstance causes an increase in
complexity of the collision avoidance prob-
lem by the number of subdevices attached
to a device. Collision resolution can still be
performed with the already described func-
tion resolving mechanism. However, the de-
vice’s function Figure 2.5 must be applied
within the parents’ ranges. This indirection
converts the already defined and absolute
values into relative ranges.

The new range function can be calcu-
lated rather easily. All gradients and offsets
of the parent’s formula can be added up.
The result is a function for the lowest device
which can move in the range of its parents.
It can be used to determine evading points
with the evasion point computation mecha-
nism described above. Because the ranges
do not change during run time, the merging
process can be done during an initialization
phase.

32



CHAPTER 2. COLLISION AVOIDANCE 2.4. COLLISION RESOLUTION

Parent devices must be tested separately
for collisions after the merged function indi-
cates a collision free move. This is required
because dimensions of parent devices are not
included in the computation. This means
the collision detection mechanism must be
extended in order to take this into account.

The axis allocation of a subaxis can ex-
tend the one of its parents or reduce it.

Example

Considering a simple robotic device with a
carrier module and an interaction module
attached to it (Figure A.9). The carrier
module can move within a predefined range
on the x axis, the interaction module cannot
move on its own.

Because the interaction module needs to
be moved during run time, its range func-
tion is used for collision detection and res-
olution. The system takes into account the
actual capabilities of the robotic device, the
function must be extended with its parent
ranges.

First, all range functions of parent mod-
ules are be calculated (Figure 2.8). Addi-
tionally, the range function of interaction
module must be generated (Figure 2.9)

Then those functions must be merged to-
gether so the result represents the maximum
range the interaction module can reach (Fig-
ure 2.10). With help of this function the ac-
tual range of the interaction module can be
determined (Figure 2.11).

The “mounting offset” (the range in Fig-
ure 2.11 between 0.1 and 0.35) of a subde-
vice is automatically included in the func-
tion if it is attached in the middle of the
parent device.

2.4.4 Device Collaboration

Sometimes a device cannot advance with its
movement because other devices are block-
ing their way. There are two possibilities
– Passive Evading and Active Evadign – in
such a situation which are described in the
following paragraphs.

0.1

0.8

2.2

x

t

Figure 2.8: The range of the carrier module

0.2

x

t

Figure 2.9: The range of the interaction
module which cannot move on its own

0.35

x

t

Figure 2.10: Range of the interaction mod-
ule after merging it with the capabilities of
its parent devices. This function may be
used for evasion determination.

0.1
0.35

2.2

x

Figure 2.11: The range of the interaction
module

33



2.4. COLLISION RESOLUTION CHAPTER 2. COLLISION AVOIDANCE

Passive Evading

If the blocking object is currently not per-
forming a move, it must be moved away in
order to let the device pass. Such an ac-
tion is basically a prefixed logical waypoint
as described in 2.4. If no solution can be
found, it means the target position is not
reachable.

Active Evading

There may be scenarios where the blocking
device is actively participating in a move op-
eration. In such a situation there are two
actions possible:

Wait The device waits until the blocking
device moves away or reaches passive
status so it can be requested to move
away.

Collaborate Both devices perform correc-
tive movements so the collision is tem-
porarily resolved.

Depending on the least overall costs, ei-
ther possibility can be chosen. Normally the
second approach tends to cause less run time
overhead.

Division of Cost As it would be subop-
timal in terms of overall run time when just
one device would perform an evasive action,
dividing the costs of movement which occur
between the involved actors is required.

The required offsets which must be ap-
plied can be calculated from the current axis
allocation and then distributed to the de-
vices according to their corresponding axis
acceleration factors.

Priority Schema There may be move op-
erations which have real time requirements.
Involving its devices in scheduling opera-
tions would be wrong as it could possibly
make the move exceed its deadline.

A “Priority Flag” could be introduced
in move representations. This would dis-
able evading mechanism for a specific move.

Figure 2.12: Because of an obstacle the de-
vice cannot reach its target location with-
out performing additional collision avoid-
ance measures.

Therefore, the more generic solution of in-
troducing a priority mechanism has been cho-
sen.

Every move contains a number describ-
ing its current move priority6). Evading op-
erations can be performed on devices whose
move priority is equal or below the current
one. The number can be specified while
the move operation is requested, thus giv-
ing the caller full control over the prioritiz-
ing schema.

2.4.5 Evading Axis Alternation

Collision Resolution loads the relevant state
of the colliding objects and computes evad-
ing points with help of their range and axis
allocation functions.

Once an evading point has been found,
the calculated offset is applied to the device
and the resolution continues with the new
data.

Because security margins are not added
separately to those evading points (Safety
Clearance), the resulting evading point is
basically still in a colliding position with the
obstacle (Figure 2.12).

Therefore, the algorithm must not per-
form collision resolution on that axis any-
more.

2.4.6 Safety Clearance

Because of the automatic control motors do
not always perform exactly according to the
specified move. Not taking those effects into
consideration while planning moves would
be careless, because driving without safety

6Priority weighting: The bigger the number, the
higher the priority

34



CHAPTER 2. COLLISION AVOIDANCE 2.4. COLLISION RESOLUTION

Figure 2.13: Once collision resolution has
calculated the nearest evading point it is ap-
plied to the device’s current position. Col-
lision resolution will detect collision on two
axes. The axis on which evasion has just
been performed on, must be ignored.

Figure 2.14: Safety clearance can be im-
plemented by simply increasing the bound-
ing box of the involved objects. Depending
on the device and their axes, different mar-
gins can be chosen according to the device’s
move precision.

margin would sooner or later result in a col-
lision.

Depending on the axis and device, differ-
ent margins based on weight and maximum
speed must be applied.

Obviously, extending the collision reso-
lution algorithm would be the easiest ap-
proach. It can read the margins from the
corresponding device and add them to the
calculated evading point.

To keep control and logic flows of those
central components simple, security margins
are realized by increasing the object’s size.
With this approach, no changes in the col-
lision resolution algorithm are required and
security margins can be added while defin-
ing the object’s dimension (Figure 2.14).

Figure 2.15: After waypoint generation
the shortest path is created by connecting
points in an optimal way.

2.4.7 Route Smoothing

When waypoints are created, they are placed
at obstacle corners. The shortest path will
then be created by connecting those points
in an ideal manner (Figure 2.15).

For the moving object this usually re-
sults in sharp direction changes. This is
time-consuming to achieve because the de-
vice must slow down its speed in order to
keep the device in line. If the speed is not
adjusted, the device is likely to overreach
the targeted route.

Obviously, those sharp edges are not al-
ways necessary. By smoothing them, the de-
vice can reduce slowdowns at vertexes lead-
ing to a lower traveling time. Thus, the path
should be made smooth whenever possible.

There are two approaches how to achieve
this.

Sinus Edges

A smooth passing around an edge can be
modeled with a sinus curve (Figure 2.16) if
supported by the motion controller. The de-
scribed process below uses a context of three
points.

First, the maximum distance in which
the new smoothed curve must reside is com-
puted. The maximum distance is PM−PB

2

or PE−PM

2 whichever is smaller. It can be
thought as a radius r around the middle
point.

Then, the point in the middle is moved
away from its current location, keeping its
relative distances to the neighbor points. A
move distance of r

2 has shown to give good

35



2.4. COLLISION RESOLUTION CHAPTER 2. COLLISION AVOIDANCE

d

r = d
2

PB

PEPM

Figure 2.16: The middle point is moved
keeping its relative directions to the start
and end point. In this example, the original
middle point is closer to the end point. Thus
the radius is set to d/2. The moved point is
connected with start and end point. The re-
sulting intersections on the circle with r are
used as starting points for the sinus curve.

results.

The moved middle point is connected to
the other two points. The two resulting in-
tersections with r are used as start and end
point of a sinus[0;Π], whose angles match the
opposite angles of the incoming lines.

To smooth a route with multiple way-
points, all points except the ones at start
and end must be moved with their corre-
sponding r

2 . After this has been done for
every point, the sinus curves can be drawn
tangentially around the edges.

With a dynamic r defining the smooth-
ing area, this approach calculates curves ac-
cording to the involved objects. Waypoints
far away from each other can be connected
with long curves allowing higher following
speeds. However, the rounded edges are still
connected with a straight line.

Cubic Spline Interpolation

A cubic spline is in mathematics a special
function S(x) that is defined by piecing to-
gether polynomials of third degree pk, also

known as cubic polynomials:

S(x) =


p0(x) x0 ≤ x ≥ x1

p1(x) x1 ≤ x ≥ x2

...
...

pn−1(x) xn−1 ≤ x ≥ xn

The goal of the cubic spline interpolation is
to find a curve fitting function (cubic spline)
that goes exactly through defined control
points (interpolation). As mentioned be-
fore, for the definition of a cubic spline a
set of defined control points is needed. The
control points are simple coordinates in the
form of (xi, yi). The cubic spline is then
constructed by interpolating a cubic polyno-
mial between two consecutive control points
(xi, yi) and (xi+1, yi+1). Constraints for con-
structing a cubic spline are listed below.

• Cubic polynomials shall pass through
their endpoints xn and xn+1:

pn(xn) = yn

and
pn(xn+1) = yn+1

• The first and second derivative of each
cubic polynomial shall be continuous:

pn(xn)′ = pn+1(xn)′

and
pn(xn)′′ = pn+1(xn)′′

The notation C2(Ω) is used to denote
this kind of twice-differentiable func-
tions whose second derivative is con-
tinuous. In the field of computer graph-
ics this level is called C2 continuity
(of curvature) and is the highest qual-
ity level. Curvature continuity means
that two curves pn and pn+1 are tan-
gential at a common endpoint x and
have the same radius of curvature at
that point. The first equation and the
first derivative of both curves ensures
that the curves are tangential at x.
The second equation assures that the
radius of the curvature is the same at
the point x, resulting in a smooth cur-
vature and transition.

36



CHAPTER 2. COLLISION AVOIDANCE 2.4. COLLISION RESOLUTION

1 2 3 4 5 6

4

5

6

7

8

9

Figure 2.17: A natural cubic spline. The
spline consists of the cubic polynomials
p0, p1, p2, p3 and p4.

• The two second derivatives of the cu-
bic polynomials p0 and pn−1 at the
endpoints x0 and xn shall be 0:

p0(x0)′′ = 0

and
pn−1(xn) = 0

Because of the last two equations the
cubic spline is called a natural cubic
spline.

An algorithm to calculate cubic splines
based on a given set of coordinates is de-
scribed in detail on Wikipedia7.

Ideally, the amount of data which must
be transferred is kept as small as possible.
However, given a typical distance between
two waypoints this results in a far too low
resolution of the calculated spline.

This might not seem to be a significant
challenge, but the inaccuracy caused by a
too coarsely described curve my cause colli-
sions with other obstacles. It also influences
the device speed in a negative way.

However, in the following sections alter-
native charting models are discussed.

Acceleration Table Instead of specify-
ing the desired speeds, passing the belong-

7[Algorithm for computing natural
cubic splines]

Figure 2.18: Example of a cubic spline ap-
plied on the obstacles’ waypoints

ing acceleration ratio for every axis allows a
more abstract description of the route.

After the movement has been split into
translations of the involved axis, it is known
which speed must be applied at a given time
on the axes to achieve the curve.

One approach to compress that data is
to further abstract the speed difference be-
tween points as shown in Figure 2.19. This
means, just if the acceleration changes be-
tween two t∆ a new value pair is required to
describe the corresponding curve. This usu-
ally leads to a reduced number of necessary
pairs to describe a movement.

The acceleration can be computed by ex-
tending the original formula with an addi-
tional derivation on its results.

However, movements with many smooth
parts like the cubic spline do still require
a significant amount of points. This is be-
cause the derivative of such curves is not any
simpler to describe than the original (Fig-
ure 2.20).

Thus, this approach does not solve the
problem of limited points. For curves there
are still many pairs required to model the
movement.

Interpolation Formula A different ap-
proach reducing the number of points re-
quired is to implement the calculation of
the cubic polynomials needed to construct
the cubic spline on the motion control itself.

37

http://en.wikipedia.org/wiki/Spline_(mathematics)#Algorithm_for_computing_natural_cubic_splines
http://en.wikipedia.org/wiki/Spline_(mathematics)#Algorithm_for_computing_natural_cubic_splines


2.4. COLLISION RESOLUTION CHAPTER 2. COLLISION AVOIDANCE

2

1

0

-1

-2

100

50

Position

Speed

t

t

Figure 2.19: By describing the movement
with its acceleration alternations, signifi-
cantly less information is required to de-
scribe the move. In the above example, just
seven acceleration factors are required to
describe the movement, whereas the origin
curve requires an update for every position
change.

1 2 3 64 5

4

5

6

7

8

9

y

x

(a) Two dimensional spline

1 2 3 4 5

-4

-2

2

4

3

1

6

y speed

t

(b) Derivative of y over time

1 2 3 4 5

-8

-6

-4

-2

2
1

6

y acceleration

t

(c) Second derivative of y

Figure 2.20: Derivatives for the y axis from
a given spline route.

38



CHAPTER 2. COLLISION AVOIDANCE 2.4. COLLISION RESOLUTION

The actual computation is fairly simple and
thus can be easily implemented anywhere:

x→ d(x− xi)3 + c(x− xi)2 + b(x− xi) + a

a can be omitted as it just describes an
offset. The computation intensive determi-
nation of b, c and d is performed with help
of a personal computer. The results and
the applicable domain are then forwarded
to the corresponding motion control which
performs the movement. Following parame-
ters must be included to enable a curve de-
scription from a given offset:

Domain start (Ds) The initial value with
which the spline function will be called.
By using relative offsets, this value can
be omitted and replaced with 0.

Domain end (De) The maximum param-
eter with which the spline function will
be called

Step width (Sw) Factor controlling move
resolution and execution time. The to-
tal execution time is (Ds −De)/Sw

b,c,d Factors which influence the develop-
ment of the curve

To actually perform the movement, the
motion controller just needs to compute the
acceleration ratio with help of the given ar-
guments it received and apply it to the cor-
responding axis (Algorithm 1).

In order to prevent a stalling of move-
ments after the end point has been reached
and before the next polynomial has arrived,
a queuing mechanism is also required. An
option to clear already pending polynomials
would allow a delayed updating of already
pending movements.

A too small distance between waypoints
results in an unexpectedly high curve (Fig-
ure 2.21). To prevent this, a minimum dis-
tance value with which a cubic spline is ap-
plied must be defined. If this value is un-
dercut, another route smoothing approach
must be chosen.

Algorithm 1 Enables Cubic Spline support
for motion controllers
Require: Axis in a defined state
Ensure: No move pending on axis
Ensure: xinc > 0

xstart ← 0
oldpos← current position on axis
for i = xstart to xend do

i← i + xinc

pos← dx3 + cx2 + bx
accel← (pos− oldpos)/xinc

if |accel| is too high then
signal error condition

end if
oldpos← pos
apply accel to axis
wait xinc

end for

0 2 4 6 8 10

0

2

4

6

8

Figure 2.21: Certain waypoints constella-
tions may result in unexpected curves

39



2.4. COLLISION RESOLUTION CHAPTER 2. COLLISION AVOIDANCE

Because the smoothing algorithms are
applied in a post-processing phase, they per-
form “blindly”. This requires an additional
check between the computed curve and axis
allocation functions to ensure no collision
will occur.

Apply Curve to Axes The route must
be partitioned into a graph for all involved
axes. They can then be sent to the corre-
sponding device which performs that move-
ment. In this partitioning step, a time factor
is introduced automatically which might re-
quire further adjustments depending on the
axis’ capabilities.

The axis specific graph which got com-
puted by the cubic spline algorithm may not
be directly applicable to the device. When-
ever the acceleration exceeds 1 or under-
cuts −1 it means the corresponding axis will
not be capable of executing the movement
within the time requirements posed by the
other axis (Figure 2.22).

In order to give the axis with a too high
acceleration factor time to reach its target
state, the other axis must slow down.

If the absolute value of the acceleration
on an axis between two waypoints is higher
than 1, the other axis decelerates by a factor
1/|slope|.

Additionally, when the two axes have a
different maximum speed, the according fac-
tors must be further adjusted to achieve an
unified representation.

After performing those corrections, it is
ensured that |slope| <= 1. The problem
of too sharp curves as shown in Figure 2.21
is automatically resolved if those corrections
are applied and the resulting graph serves as
basis for computing the splines.

The only remaining problem is that de-
spite the limited slope factor which is given
by acceleration limits, the spline may consist
of parts where there are slopes factors big-
ger than 1. By deriving the spline another
time, too high factors can be identified and
eliminated.

The whole process increases the total du-
ration of the movement.

2 3

1

2

3

4

(a) slope = 1

2 3

1

2

3

4

(b) slope = 3
2

Figure 2.22: In the left picture the accelera-
tion factor does not exceed |1|. This means
the graph can be split according to the axis
and sent to the device. In the right picture
however, the graph cannot be straightly ap-
plied because y does not raise fast enough
and would not be 3 when x reaches 2. There-
fore, the movement on x must be deceler-
ated by 1/acceleration according to the y’s
maximum acceleration ratio, i.e. the target
point must be moved to (3,3).

40



CHAPTER 2. COLLISION AVOIDANCE 2.4. COLLISION RESOLUTION

In order to avoid too many computations
because of the late stage of the process, cu-
bic spline support is ideally included into
collision resolution. The cubic spline logic
should be factored out, for example into a
strategy pattern to keep the two concerns
separated and exchangeable.

An example how the speed factors are
adjusted from a given set of waypoints is
shown starting with Figure 2.23. In Fig-
ure 2.24 the translations are put into re-
lation with a time factor. In Figure 2.25
the slope leveling is performed and finally
in Figure 2.26 the normalized points which
do not contain acceleration factors over 1
are splined.

41



2.4. COLLISION RESOLUTION CHAPTER 2. COLLISION AVOIDANCE

0 1 2 3 4 5

0

1

2

3
y

x

Figure 2.23: A set of connected collision free
waypoints in a two dimensional space.

0 1 2 3 4 5
0

1

2

3 y

t

(a) y split

0 1 2 3 4 5

0

1

2

3

4

5
x

t

(b) x split

Figure 2.24: The route is split into the avail-
able axes. As the movement never turns, x
is accelerating steadily.

0 1 2 3 4 5 6
0

1

2

3

t

y

0 1 2 3 4 5 6
0

1

2

3

4

5

t

x

Figure 2.25: Where the development of the
y graph exceeds 1 (between 2 and 4 on t),
t is adjusted that the maximum factor is 1
again. Additionally, a slow down on the x
graph is required as well to keep the move-
ment synchronized.

1 2 3 4 5 6
0

1

2

3

t

y

(a) y spline

0 1 2 3 4 5 6

0

1

2

3

4

5

t

x

(b) x spline

Figure 2.26: The normalized graphs are
used to generate axis-wise cubic splines
routes which are then applied by the mo-
tion controller.

42



Chapter 3

Realization

Figure 3.1: Deployment diagram represent-
ing the logical architecture

3.1 Design

The robotic engine is a component within
the hardware abstraction.

As the component developed serves as
basis for further development and must be
easy modifiable, it is split into subsystems
separating concerns and keeping a certain
level of modularity. As shown in Figure 3.1
those subsystems are built according to the
structure of the previous chapter. It turned

Collision

Resolution

Path 

Finding

Move

Dispatcher

Robotic Engine

Request 

Parser

Collision

Detection

Figure 3.2: Subsystems within the robotic
engine.

out to give a good modular layout. The
engine class itself serves as controlling in-
stance which supervises the logical flow. All
subsystems are kept stateless reducing er-
rors caused by side effects and eliminating
excessive synchronization needs.

Request Parser Converts move requests re-
ceived at the system boundary into an
internal representation.

Path Finding Contains the logic to tra-
verse a map of waypoints.

Collision Detection Is able to check if a
collision would occur for a given move-
ment.

Collision Resolution Is able to compute
evading points in order to avoid a de-
tected collision.

43



3.1. DESIGN CHAPTER 3. REALIZATION

CollisionMoment

DeviceContainer MoveRequest

MoveRequest MoveResult

Waypoint

Figure 3.3: The internally used data classes

Move Dispatcher Performs and controls
the actual movement asynchronously.

Additionally, the data classes listed in
Figure 3.3 are used in interactions between
the subsystems.

Device Container Wrapper class for un-
derlying drivers. It serves as storage
for move engine related meta data.

Move Request Internal representation of
the command received. Instances of
this class are generated by the Request
Parser subsystem.

Waypoint Describes a device’s state at a
given time.

Translation Describes a move of a device.

Collision Location Describes the state at
which a collision would occur includ-
ing relevant objects and their proper-
ties.

Move Result Serves as synchronization ob-
ject for pending moves.

In the following sections the mentioned
subsystems and data classes are described
in more detail. Non-obvious structures and
patterns are explained.

3.1.1 Engine Interface

This interface serves as system boundary. It
is kept rather minimal and device indepen-
dent. Its simple definition allows the calling
component to control the movement with-
out knowledge of environmental and device
specific details.

Devices Property

In this read-only collection the devices con-
trollable by the move engine are listed. Their
identifiers can be used in move requests.

Objects Property

In this read-only collection the objects which
are known to the move engine but take in a
passive role and thus cannot be actively con-
trolled are listed. Their identifiers can be
passed to the move method as parameters.

Move Method

Basically, there are move commands and ob-
jects where those commands can be applied
to. The move command can be configured
with any configuration data describing how
the object should be modified.

Move Return Value The move method
has asynchronous calling semantics. There-
fore, a mechanism is required to synchronize
for move completion once the call has been
accepted. This is achieved by returning an
instance of MoveResult. The client is able
to observe and, if necessary, abort the spec-
ified move command with that instance.

This approach is known as future pat-
tern [7]

3.1.2 Move Engine Procedure

This component controls the move engine’s
flow.

44



CHAPTER 3. REALIZATION 3.1. DESIGN

Engine Request 

Parser

Path 

Finding

Move 

Dispatcher

mr = 
Parse(args)
 : MoveRequest

wps = Traverse(mr) : Waypoint[ ]

return = PerformMove(wps) : MoveResult

Figure 3.4: Flow diagram of a move request

Initialization

After creation, it waits until the Devices list
has been initialized and its Init method is
called1.

In that initialization routine available de-
vices will be wrapped in DeviceContainer
instances and converted for easy computa-
tion in later steps. Then, the subsystems
are created and initialized with the newly
created device list.

Move

Once the engine receives a move request, it
passes the arguments received to the respon-
sible RequestParser. If a MoveRequest in-
stance could be created it will be passed
on to the Path Finding subsystem. If a
valid path could be found, the Path Finding
subsystem returns a list of waypoints which
must be followed. That list will be passed
on to the Move Dispatcher subsytem which
makes the corresponding devices move (Fig-
ure 3.4).

If an error occurs during this process it
will be signaled in form of an exception.

The engine receives a standardized rep-
resentation of the move command from the
move engine controller and tries to calculate
the according move vector.

1This is a compatibility hook for the existing
framework

+ Parse(String) : MoveRequest

RequestParser

Figure 3.5: The Request Parser class

3.1.3 Request Parser

This subsystem is responsible to convert the
commands received into an internal repre-
sentation.

The move method has just one param-
eter which allows the caller to describe the
desired move. It must be possible to specify
a device from the Devices property with an
arbitrary list of parameters. As the range
of possible parameters is not known to the
caller because they are dependent by con-
crete device implementations, no proper data
validation can be performed. Therefore, a
generic move command syntax in a tree-like
structure must be provided. This allows to
access all available devices without explic-
itly state them.

Several representations have been iden-
tified as possible candidates:

• Composite object structure

• Plain String

• XML document

• XML document, DTD verified

Because of its simple creation and easy
marshaling across system boundaries, the
string format has been chosen as data rep-
resentation for move commands. Other for-
mats could still be implemented later.

The format required to convert the string
into the internal Domain Specific Language
(DSL) can be described with following gram-
mar2:

2E:Expression, C:Command, R:Request,
O:Object, P:Parameter, A:Argument, U:Unit,
L:Length, V:Volume, F:Factor(Acceleration),
D:Digit, S:String

45



3.1. DESIGN CHAPTER 3. REALIZATION

E → E; E|CR

C → move|take|free

R→ OP

O → S/D

P → A|PA

A→ S = DU |S+ = DU |S− = DU

U → L|V |F
L→ um|mm|cm|dm|m
V → ul|ml|cl|l
F → Lˆ2
D → [0− 9]|DD

S → [a− z, A− Z]|SS

move dev/1 x+=10cm
move dev/2 y=100cm z=10mm
move dev/2 y=1cm accel=2cm^2

Listing 3.1: Examples of valid move com-
mands

Access to the corresponding devices is re-
quired in order to interpret the given values
correctly. This is why the Request Parser
subsystem must be initialized with a list of
available devices.

Once the parameters have been parsed
successfully a MoveRequest instance is cre-
ated and returned.

3.1.4 Path Finding

In order to keep the traversal implementa-
tion exchangeable, it is put into its own sub-
system and the usage of Collision Detection
and Collision Resolution as described in the
previous chapter is abstracted away. A sim-
ple node class (Figure 3.6) was built convert-
ing standard map operations into appropri-
ate calls to other subsystems. The usage of
the Path Finding subsystem could also be
abstracted. The path selection strategy can
be changed easier like this.

3.1.5 Collision Detection

Given a target position and device, this sub-
system determines whether a collision would

<<interface>>

INode

+ Cost : double
+ InternalWaypoint : Waypoint
+ Parent : Waypoint

+ GetEdges() : List<Edge>

Figure 3.6: Internal Node interface of the
PathFinding class.

+ Traverse(Waypoint, INode) : List<Node>

<<interface>>

IMapTraverser

Figure 3.7: Main interface of the
PathFinding class.

occur during the move and if so, where that
collision would occur. With the result Path
Finding may create a waypoint and use it
for further path probing.

It could be implemented as proposed in
section 2.3 on page 27.

On every request the allocation lists are
generated for the desired t∆ and evaluated.
To detect a device cross following logic is
used:

Algorithm 2 Collision detection algorithm
Ensure: Exactly one device in request

r ← request
m← moving device
for obstacle o in obstacle list do

for axis a in x,y,z do
b← oa.func(0)
e← oa.func(r.t∆a)
db ← b−ma.func(0)
de ← e−ma.func(r.t∆a)
if sgn(db) = sgn(de) then

break { No collision with o on a}
end if

end for
end for

46



CHAPTER 3. REALIZATION 3.1. DESIGN

+ Resolve(DeviceContainer,
  CollisionMoment, 
               AxisID) : List<Waypoint>

CollisionResolution

Figure 3.8: Diagram of the Collision Reso-
lution class.

A possible optimization which would re-
duce the number of checks is to solely check
the axis allocation once if the queried obsta-
cle is a passive one.

As described in 2.3, the collision check-
ing process can be aborted once it has been
stated that no collision will occur on the axis
observed. This reduces the number of re-
quired axis allocation queries to 1.5 on av-
erage per device.

This subsystem has one public method,
GetSortedCollisionMoments. It creates a
list of CollisionMoments sorted according
to their occurrences which would occur if
the given device would move from the start
to the end node.

The resulting list is then used in other
components to compute evading points. It
is sorted because the elements are normally
processed in a chronological order.

3.1.6 Collision Resolution

The Collision Resolution subsystem computes
evasion points which must be reached until
a Collision Moment in order to avoid a col-
lision. It exposes one method to the other
parts of the engine.

The first parameter contains a reference
to the device driver representing the arm
which should be moved. The second param-
eter contains the obstacle and time informa-
tion about the collision. The third parame-
ter identifies the axis on which the collision
has been detected. This parameter is re-
quired for subsection 2.4.5 described on page
34.

After loading the axis allocation and di-
mension functions from the moving device

+ PerformMove(MoveRequest,
    List<Waypoint>) : Result

MoveDispatcher

Figure 3.9: Diagram of the Move Dispatcher
class.

and the involved obstacle, it resolves those
functions to compute evading points.

It returns a list of waypoints which would
avoid the obstacle referenced in Collision Mo-
ment. If the list is empty, no evading points
could be found.

3.1.7 Move Dispatcher

Access to the motion controller is required
to be realized asynchronously. This requires
a dedicated subsystem where the waypoints
can be processed.

However, a move might also require mul-
tiple waypoints which must be passed. If the
underlying motion controller support queu-
ing of polynomials, all generated waypoints
can be passed at once. But if there are
restrictions regarding the number of asyn-
chronously sent waypoints, a detached pro-
cess is required which works off the way-
points.

The dispatching has been factored out
into a separate class in order to be able to
switch the underlying interface easily. This
simplifies any upcoming changes caused by
modifications of the underlying calling se-
mantics.

The subsystem itself (Figure 3.9) exposes
one method which requires the parameters
listed below.

• Move request of the original command

• Set of waypoints which must be fol-
lowed to move the device specified in
the move request successfully through
the environment

47



3.1. DESIGN CHAPTER 3. REALIZATION

3.1.8 Function Representation

For Collision Detection, Collision Resolution
(described in the previous chapter) and axis
capabilities, functions are used as internal
representation. In order to resolve functions
efficiently they must be provided in a stan-
dardized way. The simplest way is to put the
arguments into a data representation which
allows native access as otherwise an expres-
sion evaluator must be written. That would
introduce unnecessary parsing overhead.

An exemplary representation for

x→ 2a + b

might be implemented as

public struct Func
{
double A
double B

}

Supported functions are monotonous lin-
ear functions as

x→ ax + b

which are represented as

public struct LinearFunction
{
double A
double B
double X

}

and quadratic functions like

x→ ax2 + b

whose internal representation is

public struct QuadraticFunction
{
double A
double B
double X

}

Those representations allow highly effi-
cient evaluation of functions because native
data types can be used. It allows the move

engine to determine at which point a colli-
sion will take place as the two concerning
functions can be transformed to determine
that value.

The content of both data structures is
the same, they must be implemented in dif-
ferent data types though as they require dif-
ferent computations during evaluation.

However, restricting support to just two
types of functions means that movements
can just be expressed as linear or quadratic
functions. Once this is not sufficient any-
more, the decision of using the representa-
tions above has to be reconsidered as the
usage of an expression solver would be more
appropriate.

Example

f(x) = 0.5x + 5
g(x) = −3x + 10

The engine is able to solve the equation
by arranging the values in the data types
accordingly:

pX = (f.B+g.B)/(f.A+g.A)

However, precision loss might occur with
numbers which contain fractals which can-
not be represented in the systems floating
point data types. This means the precision
of a predicted collision point is bound to the
used data type.

3.1.9 Motion Controller

There are several types of motion controller
within the system. Each has to provide a
standard set of kinematic information so the
move engine can use that information to plan
collision free moves.

Additionally, they are also responsible to
convert the standardized representation of a
vector into their own compatible format.

Because the engine may not know the
different controllers in advance, they are ab-
stracted with help of an interface which ex-
poses the capabilities of the corresponding
device.

48



CHAPTER 3. REALIZATION 3.1. DESIGN

+ MetricUnit(String) : MetricUnit

MetricUnit

+ TimeUnit(String) : TimeUnit

TimeUnit

+ VelocityUnit(String) : VelocityUnit

VelocityUnit

Figure 3.10: Unit classes

3.1.10 Unit Handling

Creators of move requests might want to
choose appropriate units when defining their
moves, driver implementations depending on
their axis precision.

Requiring a format with a standardized
unit leads to situations where values must be
specified in an unnatural way like 1000000 µm
or 0.001 cm. This is a potential source of
errors because it is not immediately evident
what length is specified. Additionally, al-
ready existing code may break once the in-
ternal data format is changed.

To decouple internal and external units
and provide a natural way for value spec-
ification, unit classes are introduced (Fig-
ure 3.10). All components which interact
with the robotic engine can use the format
which is best for them or even implement
their own unit class.

At the system boundary, they are con-
verted into a unified floating point represen-
tation which is used for the internal compu-
tation (Figure 3.11).

3.1.11 Move Request

A MoveRequest instance is used as inter-
nal representation for received requests. It
is created by the Request Parser subsystem

Caller

Unit Conversion

Robotic    Engine

Unit Conversion

Devices

Figure 3.11: At the system boundaries unit
types are transformed into a standardized
internal form.

+ Device : DeviceContainer

+ Goal : Waypoint

MoveRequest

Figure 3.12: Diagram of the Move request
class

and used in other subsystems to perform col-
lision avoidance and perform movements.

3.1.12 Waypoint

A waypoint is implemented as defined in sec-
tion 2.2.1. It represents the state of an ob-
ject at a given moment.

In order to simplyfy access, the index op-
erator is overloaded to enable programmati-
cally access to its members by specifying the
corresponding axis.

+ XOffset : double

+ YOffset : double

+ ZOffset : double

Waypoint

Figure 3.13: Flow diagram of a move request
concerning the Move Engine

49



3.1. DESIGN CHAPTER 3. REALIZATION

+ X,Y,Z : AxisInformation
+ MergedX, MergedY, MergedZ : AxisInformation

+ MotionController : IMotionController
+ SubDevice : DeviceContainer
+ ParentDevice : DeviceContainer

+ GetCurrentWaypoint() : Waypoint

DeviceContainer

Figure 3.14: Diagram of the Device Con-
tainer class

+ Abort() : void
+ Pause() : void
+ Continue() : void
+ Finished : WaitHandle

MoveResult

Figure 3.15: Diagram of the Move Result
class

3.1.13 Device Container

The framework’s motion controller drivers
cannot be modified. Therefore, a wrapper
class is required which enables the engine to
associate internal meta data to them.

Additionally, subdevices are not mod-
eled in the underlying layer and can be rep-
resented with help of the container.

The functions starting with “Merged” rep-
resent the merged functions presented in sec-
tion 2.4. They are required to transparently
support subdevices in the detection and res-
olution subsystems. The merged functions
will be built in the container’s constructor.

The GetCurrentWaypoint method uses
the controller’s function to build a Waypoint
instance which can be used in other subsys-
tems.

3.1.14 Move Result

Move Updates

Once a request has been accepted by the
Move Engine, the caller returns a synchro-

nization object which can be used by the
caller to determine when the command has
finished.

There may be cases, where the caller is
required to change the move while it is al-
ready performing. Following update mech-
anisms are supported:

Abort The move is aborted. The device
stops and stays at its current position

Pause The move is paused. The device
stops but keeps the desired position in
memory.

Continue A route from the position of the
currently paused device to its past tar-
get position is computed and applied.

Methods supporting the listed move up-
dates are exposed in the synchronization ob-
ject because it allows to identify the update
request to the pending move.

Synchronization

The defined grammar allows the specifica-
tion of multiple move requests at once. The
waypoint generation will take place before
any movement is performed.

However, there are cases where a com-
mand needs to update settings first (e.g. ac-
celeration) before performing its move. If a
command requires many such settings the
commands execution is delayed for several
milliseconds.

To synchronize a movement, the param-
eter isInGroup can be set to true. This
delays the move until all devices have con-
figured their devices.

3.1.15 Natural Cubic Spline

The algorithm could be implemented as de-
scribed in section 2.4.7. It has a runtime be-
havior of O(6n) and was implemented as in-
dependant module in the engine (Figure 3.16)
and in the Spline Tool. It takes a set of way-
points and returns a list of the correspond-
ing polynomials.

50



CHAPTER 3. REALIZATION 3.2. IMPLEMENTATION

+ GenerateNaturalCubicSpline(
 List<Coordinate>) 
 : List<CubicPolynomial> 

NaturalCubicSpline

Figure 3.16: The Naturual Cubic Spline
class

3.1.16 Extensions

Action Oriented

In the system presented, the involved de-
vices must always be specified while creat-
ing a move request. This is cumbersome and
because the device identifiers are not static,
persisted move requests might not be appli-
cable anymore once they get executed.

One approach to free move requests from
device identifiers is to further abstract them.
By just specifying the desired result no con-
crete device identifier is required anymore.
The engine can determine on its own which
devices must be used. A request like move
tube 1, storage 8 could be parsed by the
engine as:

1. Query the specified object to deter-
mine how it can be moved.

2. tube 1’s class marks itself as moveable
by a gripper

3. Currently there is one device with grip-
per functionality available, dev 3

4. Start movement

(a) Move dev 3 to tube 1’s position

(b) Apply the gripper functionality

(c) Move dev 3 to storage 8’s posi-
tion

(d) Free the gripper

This would require an extension in the
parser subsystem as well as in the device
drivers which must be enriched with meta
data. Additionally, a set of processes must

be available in the engine which are applied
depending on the move requirements of the
corresponding device.

3.2 Implementation

The engine was required to be implemented
in C#, .NET Framework 3.5. The presented
concepts and designs have been partially re-
alized. Subsystems have not been included
in the engine when it would require major
changes and they are planned to be used in
a different context anyway.

3.2.1 Axis Logic Redundancy

Often a computation must be performed for
several axes which require parameter from
different sources. In order to avoid repeat-
ing slightly varying code sequences, acces-
sors which allow programmatic axis selec-
tion have been implemented in all major
components:

AxisID id = this.GetID ();
moment[id] = this.Resolve(

device[id].Func ,
device[id].Dim);

This certainly increases the complexity
but is done anyway to avoid redundant code
blocks.

3.2.2 Time Handling

Collision Detection works by resolving func-
tions which are active at a given moment.
Because the real motion controller is not ac-
tually accessed and can serve as time emit-
ter, a separate notion of time has been im-
plemented: A counter variable has been in-
troduced which increases while moves are
performing. The calculation of evasion points
is still realized with time differences but once
the computation has completed, the result-
ing time offsets are added to the current
counter.

Additionally, although logically correct,
negative time values are avoided when cre-
ating translations.

51



3.2. IMPLEMENTATION CHAPTER 3. REALIZATION

3.2.3 Active Evading

An active evading mechanism, where inac-
tive devices move away from moving ones
could not be implemented because of insuf-
ficient resources.

3.2.4 Dynamic Dimension

No detailed description of devices was avail-
able. Therefore, all dimension properties
handled as static values are always evalu-
ated with “0” and never with the time counter.

3.2.5 Performance

Where not explicitely stated, the tests were
executed with a release build of the program
on a 2.5GHz Core 2 Duo with 2GB RAM
Laptop

Axis Distinction

Due to the generic nature of the engine there
are many places where the program must
determine which axis is affected.

There are several ways to accomplish the
comparison. Depending on the data type
used, different performance is achieved.

String Based Distinction Axes are iden-
tified by a string identifier.

if( axis == "x" )
...

int Based Distinction Axes are identi-
fied by a predefined integer constant.

public const int X=1;

if( axis == Class1.X )
...

enum Based Distinction Axes are iden-
tified by an enum. Although the enum uses
integers internally, it may behave differently.

public enum Axes
{ X,Y,Z }

if( axis == Axes.X )
...

Test The test is implemented as listed be-
low where comp refers to the respective com-
parison method.

int x=0,y=0,z=0;

for(int i=0; i <10^8;i++)
if( <compX > ) x++;
else if( <compY > ) y++;
else if( <compZ > ) z++;

This is executed for all three implemen-
tations.

ms

838

In
te

ge
r

848

Enu
m

1558

St
rin

g

Figure 3.17: Execution times of different
comparison methods after 100′000′000 iter-
ations.

Conclusion The comparison overhead of
all three methods is negligible. However,
due to additional type safety the enum based
comparison method will be used.

Delegate vs Method

During Collision Avoidance many function
values of involved objects need to be cal-
culated from a given argument. The factor
and offset must be exposed anyway in order

52



CHAPTER 3. REALIZATION 3.2. IMPLEMENTATION

to be able to solve function systems. The
evaluation can be realized in different ways.

Lambda Expression A C# Lambda Ex-
pression which is easier to read in code. It is
represented in a type which leads to better
control.

public struct Function
{
double A,B;

Func <double ,double > Evaluate
= x => A*x+B;

}

Method A classical method is harder to
read. Belated changes are harder to imple-
ment.

public struct Function
{
double A,B;

double Evaluate( double x )
{

return A*x+B;
}

}

Test During the test the argument is up-
dated making it impossible for the environ-
ment to cache any results.

for(int i=0; i <2*10^9; i++)
func.Evaluate( i );

This is executed for both implementations
with different data types.

Evaluating lambda expressions takes sig-
nificantly longer than its method equivalent.
Using float as data types also increases
computation time.

Conclusion Function representations will
be implemented with normal methods. The
double data type is used as float represen-
tations have a big negative impact on com-
putation time.

ms

38

m
-d

ou
bl

e

358

λ-
do

ub
le

38

m
-in

t

391

λ-
in

t

597

m
-fl

oa
t

677

λ-
flo

at

Figure 3.18: Execution times of method and
delegate evaluations after 100′000′000 itera-
tions.

Table 3.1: Configuration A

Parameter Value

Number of coordinates 100
Maximal x value 100
Maximal y value 100
Number of iterations 1000

Natural Cubic Spline Algorithm

The algorithm for calculating a natural cu-
bic spline is put to the test. The algorithm
has been implemented in two different ways.
Both versions differ in the memory alloca-
tion. The first version, which is used through-
out the code and is the safe implementation
of the algorithm allocates the arrays on the
heap using the new keyword. The second
version which has been implemented allo-
cates the arrays on the stack by using the
unsafe stackalloc keyword.

Configurations The configuration of the
following tests are described in Table 3.1,
Table 3.2 and Table 3.3.

Conclusion There are just minor differ-
ences between the execution times with the

53



3.2. IMPLEMENTATION CHAPTER 3. REALIZATION

Table 3.2: Configuration B

Parameter Value

Number of coordinates 1000
Maximal x value 100
Maximal y value 100
Number of iterations 1000

Table 3.3: Configuration C

Parameter Value

Number of coordinates 10000
Maximal x value 100
Maximal y value 100
Number of iterations 1000

ms
0.253

in
te

ge
r

0.241

in
te

ge
r
(s
ta

ck
al
lo

c)

0.241

do
ub

le

0.235

do
ub

le
(s
ta

ck
al
lo

c)

Figure 3.19: Execution times of the Natu-
ral Cubic Spline Algorithm with 100 coor-
dinates (for details see Table 3.1) as input
data.

ms 2.902

in
te

ge
r

2.812

in
te

ge
r
(s
ta

ck
al
lo

c)

2.812

do
ub

le

2.787

do
ub

le
(s
ta

ck
al
lo

c)

Figure 3.20: Execution times of the Natu-
ral Cubic Spline Algorithm with 1000 coor-
dinates (for details see Table 3.2) as input
data.

ms

30.841

in
te

ge
r

29.912

in
te

ge
r
(s
ta

ck
al
lo

c)

30.615

do
ub

le

30.402

do
ub

le
(s
ta

ck
al
lo

c)

Figure 3.21: Execution times of the Natu-
ral Cubic Spline Algorithm with 10000 co-
ordinates (for details see Table 3.3) as input
data.

54



CHAPTER 3. REALIZATION 3.2. IMPLEMENTATION

Collision Detection

Parsing

Collision Resolution

Splining

Dispatching

3 µs/devices

4 µs/request

0.8 µs/obstacle

3 µs/waypoints

n/a

Figure 3.22: Throughput measurements on
a 2005 Intel Pentium D 2.8 GHz

different configurations. stackalloc is not
used to calculate natural cubic splines and
double is used as data type.

3.2.6 Run Time

The elements in Figure 3.22 affect the run
time performance.

The different processing steps fulfill the
posed requirements. As not many waypoints
get generated in a typical robotic environ-
ment, fast computation of collision free paths
can be expected. The dispatching overhead
will depend on the concrete implementation.

Parsing

The parse subsystem must map the given
identifier to the internal device driver and
resolve the properties specified. In an en-
vironment with five devices, the command
“move ID=abc x=1cm y+=0.3m” takes 4
µsto be converted into a MoveRequest class.

Collision Detection

In an environment with five devices, com-
pute possible collision moments with other
devices takes 3 µs.

Collision Resolution

Given a collision moment and an obstacle,
evasion points can be calculated within 0.8
µs.

Splining

It takes a different amount of time depend-
ing on the number of coordinates given. A
set of ten waypoints can be computed in 3
µs.

Move Dispatching

The time required to dispatch a set of way-
points depends on the actual implementa-
tion.

3.2.7 Limitations

Acceleration Ratio

The acceleration ratios of the involved de-
vices are taken into account while the path
is computed. However, during a move the
speed cannot be changed until a waypoint
is reached. Supporting this behavior would
require a recomputation

3.2.8 Problems

Natural Cubic Splines Algorithm

While evaluating the natural cubic splines
algorithm on Wikipedia3, it turned out that
the listed algorithm contained errors in the
definition. The algorithm has then been cor-
rected by the team and the new solution
submitted to Wikipedia45

3Spline (mathematics)
4Corrections made to the algorithm by the team
5Notes on the discussion page explaining the

changes made by the team

55

http://en.wikipedia.org/wiki/Spline_(mathematics)
http://en.wikipedia.org/w/index.php?title=Spline_(mathematics)&diff=288288033&oldid=288243277
http://en.wikipedia.org/wiki/Talk:Spline_(mathematics)#Algorithm
http://en.wikipedia.org/wiki/Talk:Spline_(mathematics)#Algorithm


3.2. IMPLEMENTATION CHAPTER 3. REALIZATION

56



Chapter 4

Algorithm Analysis

In this chapter generic path finding algo-
rithms are described and evaluated in con-
sideration of the target system. Basically,
path finding algorithms can be classified into
following three categories.

Uninformed Search Uninformed search al-
gorithms can be realized in a generic
way. This makes them applicable for a
wide range of problems. Their down-
side is the large amount of time re-
quired to perform simple searches in
large search spaces.

Graph Search A graph search algorithm
uses graph traversal to find a given
node in a graph.

Informed Search Informed graph search
algorithms use a problem specific heuris-
tic as guiding help. Hence, good heuris-
tics boost up the performance of an in-
formed search and normally lets them
outperform uninformed searches. [3].

4.1 Dijktra’s Algorithm

Dijkstra’s Algorithm is a graph search algo-
rithm that can be used on weighted graphs.
It computes a vector representing the short-
est path.

Search Area

The search area is defined as a directed and
weighted graph where edges have non-negative
path costs.

Node Types

Unvisited Nodes Nodes which either have
not been checked yet or are not con-
sidered for further investigation in the
actual iteration due to a large distance
value.

Visited Nodes Nodes whose neighbors have
been checked and it is sure that the
distance value is minimal and will not
be overwritten.

Node Information

The only information a node holds is a dis-
tance value which equals the cost to reach
that node. That value will be continuously
updated by the algorithm.

Before the algorithm starts to search for
the shortest path, it sets the distance value
of the starting node to 0 and all others to
∞+.

Path Scoring

For calculating the path from a node A to
another node B, the distance value of A and
the cost for traversing the connecting edge
are required. The actual distance value of
B is updated only if the sum of the distance
value of A and the path cost for traversing
the connecting edge is less than the distance
value of B:

distB = min(distB , distA + edgecostA→B)

with distB as the distance value of B.

57



4.1. DIJKTRA’S ALGORITHM CHAPTER 4. ALGORITHM ANALYSIS

Approach

Dijkstra’s algorithm advances according to
following steps:

1. Set the starting node’s distance value
to 0 and all other to ∞+.

2. Mark all nodes as unvisited and set
the starting node as current node.

3. Calculate the distance of the current
node’s unvisited neighbors1.

4. Mark the current node as visited if all
neighbors have been checked and the
distance value of every neighbor has
been calculated.

5. Set the unvisited node with lowest dis-
tance value as next current node.

6. Repeat steps 3 to 5 until the goal node
is marked as visited.

Example Search

Environment

During the exemplary search a simple graph
consisting of four nodes is used (Figure 4.1)

A

D

C B

Figure 4.1: The predefined search graph
with node A as the starting node and B as
goal node.

1A neighbor node is a node that can be reached
directly from the current node.

Caption

Following captions are used during the ex-
ample:

• Search area (graph):

– Visited blue (blue)
– Starting node (green)
– Goal node (red)

• Table:

– Visited node (bold)

Procedure

For the example the node A is selected as
starting node and B as goal node. The al-
gorithm starts with setting the distance val-
ues of every node in the graph (0 for the
starting node,∞+ for all other nodes). The
next step is to calculate the distance values
of A’s neighbors. The distance value for the
neighbor node B is 4, since the edge cost for
A → B is 4 and the actual distance value
of B, ∞+, is bigger than 4. For the other
neighbor nodes of A, C and D the following
distance values are calculated:

Step A B C D

0 0 ∞+ ∞+ ∞+
1 0 20 via

A
10 via
A

7 via
D

The next step is to move forward by select-
ing the node with the lowest distance value
from the list of unvisited nodes, that is node
D. The algorithm checks the neighbor nodes
of D which results in following distance val-
ues.

Step A B C D

0 0 ∞+ ∞+ ∞+
1 0 20 via

A
10 via
A

7 via
A

2 0 17
via D

10 via
A

7 via
D

Due to the simple procedure of the algo-
rithm, the next steps are shown incremen-
tally in the following tables.

58



CHAPTER 4. ALGORITHM ANALYSIS 4.2. A* SEARCH ALGORITHM

Step A B C D

0 0 ∞+ ∞+ ∞+
1 0 20 via

A
10 via
A

7 via
A

2 0 17 via
D

10 via
A

7 via
D

3 0 12
via C

10
via
A

7 via
D

Step A B C D

0 0 ∞+ ∞+ ∞+
1 0 20 via

A
10 via
A

7 via
A

2 0 17 via
D

10 via
A

7 via
D

3 0 12 via
C

10
via
A

7 via
D

4 0 12
via
C

10
via
A

7 via
D

The algorithm added the goal node B
to the list of visited nodes in the last step,
signalizing that a shortest path to B has
been found. The next step consists of re-
constructing the shortest path to reach B.
This is done by following back the path by
going from via to via until the starting node
A is reached. In the 4th step the via in the
column for the node B points to C. In the
3rd step the via located in the column for
node C points to the starting node A, so the
shortest path to reach the goal node B from
the starting node A is: A → C → B.

Conclusion

Dijkstra’s algorithm is an efficient algorithm
because of its low memory usage and sim-
plicity. However, it is not suitable for the
problems of this project. Mainly because
the target environment and its dynamic be-
havior cannot be modeled in a graph since
basically the number of platform states is
unlimited.

4.2 A* Search Algorithm

A* search algorithm (A*) is an informed
search that uses best-first search and heuris-
tic values to find a shortest path. This sec-
tion describes A* [2] and contains an exam-
ple demonstrating its functionality.

Search Area

The first step of the algorithm is to sim-
plify the search area. By dividing the search
area into squares a two dimensional matrix
gets created. Squares may have the status:
walkable or not walkable. Examples of not
walkable squares are walls, water and other
illegal terrain.

Because the search area can be divided
in shapes like triangles or rectangles, the
term node is used to refer to those items
in.

Node Types

The nodes of a search area can be classified
with following three types:

Unknown Nodes Nodes that are not dis-
covered yet. It is still unknown how to
reach them.

Known Nodes Nodes to which a (maybe
suboptimal) path is known. They are
saved in the open list and marked with
an F score.

Checked Nodes Nodes to which the short-
est path is known. These nodes are
saved in the closed list and need no
further investigation.

Two lists, open list and closed list are used
to track the two node classes mentioned last.
Open list contains nodes that were discov-
ered but have not been checked yet. Closed
list contains nodes which were transferred
from open list once their shortest path got
computed.

Initially, open list contains only the start-
ing node, closed list is empty.

59



4.2. A* SEARCH ALGORITHM CHAPTER 4. ALGORITHM ANALYSIS

A
C

DE

Figure 4.2: A is the starting node. D can
reach A with a diagonal move, whereby C
and E can reach A with an orthogonal move.

Node Information

All information a node holds is a pointer
to the parent node and its F score. In a
square grid, there are two types of pointers:
diagonal and orthogonal (horizontal or ver-
tical) ones. This distinction is important,
because a diagonal pointer is weighted dif-
ferently than an orthogonal one while calcu-
lating the shortest path.

Path Scoring

Following equation is used to compute the
F score:

F = G + H

G is the cost to move from the starting node
A to a given node on the grid. It does not
have to be an adjacent node.

To calculate the shortest path, two dif-
ferent values for each direction (diagonal or
orthogonal) are required. These two num-
bers can be floating point numbers, but for
simplicity and for faster calculations it is
recommended to use integers.

The cost of a diagonal move is weighted
with 14 and the cost of an orthogonal move
with 10. To calculate G along a path, the G
cost of the parent has to be incremented by
10 if the parent node can be reached with an
orthogonal move or by 14 if it can be reached
with a diagonal move. For example refer to
Figure 4.2: A is the parent node of C. Since
A is the starting node and C can reach A
with an orthogonal move, the G cost of C
is GC = GA + Gorthogonal = 0 + 10 = 10.

A C

B

Figure 4.3: An example on how to calculate
the H cost using the Manhattan method.
To calculate the H cost for node C the num-
ber of orthogonal moves (red line) that are
needed to be taken to reach the final node
B have to be counted and multiplied by 10
(cost for an orthogonal move). The blue
squares are obstacles and they are ignored
by the Manhattan method. To reach the fi-
nal node B from C seven orthogonal moves
are needed (four horizontal moves and three
vertical moves), so that Hc = 7 ∗ 10 = 70.

H is the cost to move from a given square
to the final destination. H is a heuristic val-
ued, which can be calculated by using differ-
ent methods. Here, one heuristic, the Man-
hattan method2 is used (Figure 4.3).

The Manhattan method calculates the
total number of orthogonal moves which are
necessary to reach the target square from
the current square and multiplies the total
number with the selected value of 10 for or-
thogonal moves. The method ignores possi-
ble diagonal movements and obstacles

Finally, F will be used to select the node
with the lowest score from open list to con-
tinue the search for the shortest path.

Approach

1. At the beginning, the starting node is
added to open list

2. The node in open list with the lowest
F score is set as current node)

3. The current node is moved to closed
list

2The Manhattan method is also known as the
Manhattan distance

60



CHAPTER 4. ALGORITHM ANALYSIS 4.2. A* SEARCH ALGORITHM

4. For every adjacent:

(a) Ignore if already in closed list.

(b) Add to open list if not already
there yet and set the current as
its parent node.H, G and F are
computed.

(c) If already in open list, check if
the path from the current node
to that node is better. This can
be realized by adding the cost to
reach the node (either orthogonal
or diagonal) to the current node’s
G cost. If Gnew is lower than
Gnode, Gnode is updated with it
and the current node is set as new
parent node. If the G cost of
the adjacent node is higher than
the sum of the current node and
the cost for reaching the adjacent
node (either 10 or 14), the parent
node of the adjacent node is set
as current node. The G cost is
set to Gcurrent + Gcost. Since G
cost changes, the F value of the
adjacent node must be updated
accordingly.

5. The procedure can be stopped when

(a) The target node has been added
to closed list which means a path
has been found

(b) open list is empty, which indicates
that no path could be found

6. The shortest path is computed by track-
ing backwards through the parent nodes
until the starting node is reached.

Example Search

An often used word in this section is Inspec-
tion Block, which represents a node N and
its adjacent nodes which must be inspected.

Environment

The search area used for this example search
is shown in Figure 4.4.

A

B

Figure 4.4: A is the starting square (green-
colored), B is the final square (red-colored).
The blue-colored squares are obstacles.

Caption

Following patterns are used:

Node in the open list Square with an or-
ange border

Node in the closed list Square with a red
border

Unknown node Square with a black bor-
der

Obstacle Square in blue

Starting node Square in green

Final node Square in red

Procedure

The start node A is added to the closed list
because open list is empty anyway; it has
the lowest F score. Then, all adjacent nodes
are added to open list because they are no
obstacles. A is set as parent node of every
adjacent (Figure 4.5)

To calculate G, H and F for the adja-
cent nodes, the G cost must be calculated
first. As mentioned in 4.2, an orthogonal
move costs 10 and a diagonal one 14. The
resulting G costs for the adjacent nodes are
shown in Figure 4.6 as well as the H cost

61



4.2. A* SEARCH ALGORITHM CHAPTER 4. ALGORITHM ANALYSIS

A

Figure 4.5: The first step of finding the best
path. Start node A is in the closed list (red
border). The adjacent nodes point to A
which means A is their parent node.

which is computed according to the Man-
hattan method. The F values are shown in
Figure 4.8.

Moving Forward

Now that the adjacent node’s G, H and F
cost are known, the search goes on by select-
ing the node with the lowest F score which
is the node at the bottom right with F = 74.
It is moved to the closed list and called N1.
Its block (Figure 4.9) is inspected:

First the two unknown nodes are added
to the open list and the G, H and F values
are calculated. For the first unknown node
G is 14 because a diagonal move is necessary
to reach node N1. H 70, because seven or-
thogonal moves (three horizontal moves plus
four vertical moves) are necessary to reach
the final node B. The F score is simply the
sum of the previously computer values, 84.
The costs of the second unknown node are
G=10, H=60, F=70.

After the costs have been calculated, their
corresponding nodes are added to the open
list.

The adjacent node right under our cur-
rent node N1 is checked as next. The G
cost of that node is 14 and GN1 = 10. The
cost of an orthogonal move must be added to
GN1 since an orthogonal move is necessary
to reach that node. This results in Gnew =
GN1 + Gorthogonal = 10 + 10 = 20 and since

A

10

G

14

10

1410

Figure 4.6: G cost of each adjacent node
(upper left value of each node). The G cost
of the nodes is calculated by adding 10 for an
orthogonal move or 14 for a diagonal move
to the G cost of the parent node. Due to
the fact that the G cost of the parent node
- which in this case is also the starting node
- is 0, so the G cost of an adjacent node is
either 10 or 14.

A

10/90
G/H

14/80

10/70

14/6010/70

Figure 4.7: G and H cost of each adjacent
node (upper left value of each node). The
H cost of the nodes is calculated by using
the Manhattan method (refer to Figure 4.3).
For example, the H cost of the most right
adjacent node is 70, because seven orthogo-
nal moves (four horizontal moves plus three
vertical moves) are necessary to reach the
final node B. H = 7 ∗ 10 = 70.

62



CHAPTER 4. ALGORITHM ANALYSIS 4.2. A* SEARCH ALGORITHM

A

10/90
G/H

F

14/80

10/70

14/6010/70

100 94

80
80 74

Figure 4.8: F core of each adjacent node.
After calculating the F score by adding the
G cost + H cost the adjacent nodes are
added to the open list (orange border).

A

10/90 14/80

10/70

14/6010/70

100 94

80
80 74

N1

Figure 4.9: The new inspection block of the
node N1 is shown. The inspection block
contains four nodes from the open list, two
nodes from the closed list, two unknown
nodes and one obstacle. Our actual position
is the node N1 on the right of the starting
node A.

B

A

10/90
G/H

F

14/80

10/70

14/6010/70

100 94

24/70

94
20/60

8080
80 74

N1

Figure 4.10: Search area after the second
step point to section.

this is not a better path ((Gnode < Gnew))
no costs need to be updated and N1 will
not be set as new parent node of the ad-
jacent node. For the other three adjacent
nodes, no costs need to be because no path
improvement can be achieved.

Updating an Established Path

To show how a path is updated, the search is
moved forward and three steps are skipped
- adding N2, N3 and N4 to the closed list.

N4’s inspection block (Figure 4.12) con-
tains four nodes which can be ignored be-
cause they are already in the closed list.

The remaining node is inspected by point-
ing it to N4 instead of node A: N4’s G cost
is 10 and since an orthogonal move is neces-
sary to reach that node, 10 must be added to
its G cost (Gnew = GN4+Gorthogonal = 10+
10 = 20). Comparing the current G value
(28) with Gnew (20) shows that a better re-
sult is achieved by setting node N4 as new
parent node (Figure 4.13). Now that the
node’s G cost has changed, the F score needs
to be updated (Fnode = Gnew + Hnode =
20 + 60 = 80).

Obstacles

Moving a step forward the algorithm gets to
choose between two nodes in the open list

63



4.2. A* SEARCH ALGORITHM CHAPTER 4. ALGORITHM ANALYSIS

B

A

10/90
G/H

F

14/80

10/70

14/6010/70

100 94

24/70

94
20/60

8080
80

28/60

88

74

N1

N2N4

24/50

74

34/60

94

38/70

108

N3

Figure 4.11: Search area after the fifth step,
before checking the adjacent nodes of node
N4.

A
10/70

14/6010/70

80
80

24/50

74

20/60

88

74

N1

N2

N3

N4

Figure 4.12: The inspection block for node
N4 consisting of 4 nodes already contained
in the closed list and one node contained in
the open list, for which the path has to be
checked.

A
10/70

14/6010/70

80
80

24/50

74

20/60

80

74

N1

N2

N3

N4

Figure 4.13: The inspection block for node
N4 after applying the score and path up-
dates to the highlighted node below N4.

14/80

10/70

14/60

94

24/70

94
20/60

8080

74

N1

N2

N5

Figure 4.14: The inspection block for node
N5 is shown in the image.

54/40

94

72/10

82

54/40

94

B
82/00 82

N11

Figure 4.15: The final node B has been
added to the closed list. That means that
the best path has been found and the search
algorithm can terminate its search.

that have a F score of 80 which is the lowest
F score. The rightmost node is selected and
named N5 (Figure 4.14)

The unknown node in the upper right
can be ignored because it cannot be reached
with a diagonal move from N5 because a cut
across an obstacle would be required to ac-
complish this. The node is ignored since it
is impossible to reach the adjacent node di-
rectly. Checking the remaining nodes in the
inspection block results in no changes which
means the search can continue.

Reaching the Target

The search process is repeated until node B
is put into the closed list which means the
algorithm found the best path (Figure 4.15).

The shortest path can then be computed
by moving from parent node to parent node
beginning at B until node A is reached. (Fig-
ure 4.16).

64



CHAPTER 4. ALGORITHM ANALYSIS 4.3. ITERATIVE DEEPENING A*

A

10/90
G/H

F

14/80

10/70

14/6010/70

100 94
20/60

80

68/20

8880
80 74

N1

N2N4

24/50

74

34/60

94

30/70

100

N3

N5

20/60

80 N6

24/70

94

72/30

102
N7

54/40

94

54/40

94

54/40

94

54/40

94

44/50

94N8 N9

72/10

82

54/40

94

34/60

94

58/30

88

N10

B
82/00 82

N11

Figure 4.16: The best path is highlighted
with blue and can be determined by follow-
ing the arrows back from the final node B
to the starting node A.

Conclusion

A* is an intelligent algorithm which is capa-
ble to handle a given environment. The big
amount of memory it uses to keep track of
nodes is not a big issue since it would run
on a modern desktop machine.

However, modeling a three dimensional
representation of the platform model creates
a huge amount of cells which must be tra-
versed. Estimations have shown that it will
not be possible to find a path within the
time requirement given. Additionally, the
map must be constantly updated as other
objects may change their positions on every
iteration, creating a fourth dimension of the
already big model.

4.3 Iterative Deepening A*

The IDA* is a variant of the A*, which uses
less memory thanks to its methodology of
not using lists to track visited nodes. Since
IDA* is a variant of A*, IDA* differs only
in a few points from the A*, but shares its
advantages.

IDA* Compared to the A* Search
Algorithm

Before giving a detailed description of IDA*,
a comparison with the A* is made to show
the differences.

Starting with the simplest difference, IDA*
does a depth-first search whereas A* does
a best-first search. IDA* itself is a variant
of the Iterative deepening depth-first search
(IDDFS) but other than IDDFS, IDA* uses
the F score (heuristic value) as a threshold
and not a specified depth limit.

Doing a depth-first search has the advan-
tage of having storage linear to the length
of the shortest path. Along with this, IDA*
does not use a closed or an open list like
A* does. Hence its memory usage is lower.
Even if this sounds like an advantage, it
is also a disadvantage due to the fact that
IDA* ends up re-visiting nodes many times
since it does not track nodes that have been
visited.

IDA* uses a left-right traversal of the
search frontier, whereas A* maintains the
search frontier in the open list in a sorted
order. This is an advantage of the A* as
it knows where to continue the search by
selecting the next node from the open list
in a best-first manner. IDA* instead has
to start iterating from the beginning to re-
construct its search frontier, avoiding A*’s
memory problem of maintaining the open
list but slowing down the search process.
There is a variation of the IDA* called the
Memory-enhanced IDA* (ME-IDA*) which
makes the usage of a transposition table.
The transposition table, typically implemented
as a hash table, stores search results. ME-
IDA* uses the transposition table to query
it, checking if further search in the sub-tree
of the queried node is necessary or unneces-
sary.

Search Area

For describing IDA* and especially showing
the usage of the depth-first search a simple
tree is used (see Figure 4.17)

65



4.3. ITERATIVE DEEPENING A* CHAPTER 4. ALGORITHM ANALYSIS

21

2

12 1

start

goal

2 2

1 21 1

Figure 4.17: The predefined search area for
the IDA* example search. The start node
and goal node are marked.

Each edge in the tree is labeled with a
path cost of 1 or 2. These values are needed
for calculating the G cost of a specific node.

Node Types

The nodes in the search tree are classified
into two types by IDA*:

Visited Nodes Nodes that have been vis-
ited but the algorithm has proven that
no solution is possible with the actual
set threshold (described later) and stopped
its search there.

Expanded Nodes Nodes that the algorithm
has checked successfully and have an
F score lower than the threshold.

Path Scoring

Like the A*, IDA* makes use of the F score,
which is calculated in the same way as A*
does:

F = G + H

G is the cost of the path from the start node
to the current node. As mentioned above,

each edge is labeled with a path cost.

H is a heuristic estimate defined by the num-
ber of moves required to reach the goal of
the actual tree. An actual move has a cost
of 1.

IDA* defines beside the named two values
another important value:

Flimit

which is a threshold and is used to stop the
search, without searching further in the sub-
tree once a node is found whose F score is
bigger than the defined threshold (Fnode >
Flimit). The threshold is incremented by 1
if no goal node has been found in the ac-
tual iteration and a new search is performed,
starting from the start node and rebuilding
the search frontier from scratch. Since IDA*
does not track visited nodes a new search
means to repeat the previous iterations and
continue the search. Regardless of this the
threshold Flimit is a benefit. It avoids that
IDA* searches to deep in the tree. This
saves a lot of time in execution, signaliz-
ing early that a deeper search is unprofitable
and to continue the search elsewhere.

Search Algorithm

This is a description of the steps IDA* makes
to find a shortest path to the goal node. An
example search is presented in the subsec-
tion Example Search of section 4.3.

1. Define the threshold Flimit

2. Do an IDDFS with threshold Flimit as
limit

(a) Expand a node if Fnode ≤ Flimit

(b) Do not expand a node and mark
it as visited if Fnode > Flimit.

(c) Stop the search if goal node has
been found. Else continue the
search on the subtree of the last
node with an alternative path if a
node has been found with Fnode >

66



CHAPTER 4. ALGORITHM ANALYSIS 4.3. ITERATIVE DEEPENING A*

Flimit (standard behavior of ID-
DFS).

3. If Fringe Search (FS) has finished its
search (using IDDFS) and has not found
the goal node with the actual thresh-
old Flimit, increase Flimit by 1 and
restart IDDFS from the beginning (start
node) with the new threshold.

4. If the goal node has been found, save
the best path by backtracking it.

Example Search

This section shows how IDA* works by using
a predefined search area defined Figure 4.17
to show its path finding process step by step.
The path costs for each step are already set
in each edge of the tree. The heuristic value
H is calculated by summing up the moves
needed to reach the bottom of the tree with
a constant move cost of 1. The G cost is
defined as the cost to get from the start node
to the current node, calculated by adding
the costs set at the (traversed) edges in the
tree.

Caption For The Search Area The fol-
lowing distinct marks are used to mark spe-
cial nodes:

• Node with black background:
Expanded node

• Node with gray background:
Visited node

• Node with white background:
Unvisited node

The Beginning The threshold is set to
Flimit = 4. The search starts by first mark-
ing the start node as expanded. If a node
is marked as expanded it means that its F
score is less than the threshold Flimit and
the search can continue in its subtree (due
to the fact that it has been expanded). As a
next step the node in the left subtree of the
start node is examined. The G cost of the
current node is Gnode = 1, since only one

edge with a cost of 1 has to be traversed to
get from the start node to the current node.
The H cost is Hnode = 3 since three moves
(each weighed with 1) are needed to reach
the bottom of the tree (or the actual part
of the tree). The F score for this node is
Fnode = Gnode + Hnode = 1 + 3 = 4 and
since Fnode ≤ Flimit the node is marked as
expanded and the search is continued in the
current node’s subtree. The next node is se-
lected for examination. For this node the
following values are calculated:

• Gnode = 3

• Hnode = 2

• Fnode = 5

Due to the fact that its F score is greater
than the threshold Flimit the node is marked
as visited, but the search is not continued in
its subtree. A characteristic of the depth-
first search is (since IDA* is a variation of
the IDDFS, and IDDFS uses a depth-first
search), that if no goal node is found in the
subtree with Fnode ≤ Flimit the algorithm
goes back to the node from which an alter-
native path is possible. In the current sit-
uation this is the start node, so the search
continues from there, checking the node in
its right subtree. The following values are
calculated for the current node in the right
subtree of the start node:

• Gnode = 2

• Hnode = 3

• Fnode = 5

The F cost of this node excesses the thresh-
old Flimit too. Since the algorithm cannot
find an alternative path by revisiting the
start node, IDA* finishes its first iteration
and increases the threshold Flimit by 1, so
that Flimit = 5. The tree in Figure 4.18
shows the expanded and visited nodes in the
first iteration.

67



4.3. ITERATIVE DEEPENING A* CHAPTER 4. ALGORITHM ANALYSIS

21

2

12 1

start

goal

2 2

1 21 1

Figure 4.18: The tree after the first iteration
with a threshold set to Flimit = 4. Two
nodes have been expanded and two nodes
have been marked as visited.

Second Iteration Now that the first it-
eration has ended without any feasible re-
sults, the search restarts from the start node
with a new threshold Flimit = 5. Since the
algorithm will mark the same nodes as ex-
panded like the iteration before, the search
continues in the tree shown in Figure 4.183.
That is the search will continue in the start
node’s left subtree, since depth-first search
would first take this path when restarting
the search process. The visited node in the
left subtree of the start node is checked first.
For this node the following values are calcu-
lated:

• Gnode = 3

• Hnode = 2

• Fnode = 5

3This is not a characteristic of IDA*, since it
does not held track of the nodes that are part of the
search frontier. This is only a simplification for not
having to repeat the steps made in the first iteration
in this paragraph.

This node is marked as expanded and since
the node is a branch, its left subtree is se-
lected for further inspection. The whole search
process is repeated until all nodes with an
F score less than the threshold Flimit have
been checked. The new tree is shown in Fig-
ure 4.19.

21

2

12 1

start

goal

2 2

1 21 1

Figure 4.19: The tree after the second iter-
ation with a threshold set to Flimit = 5. Six
nodes have been expanded and three nodes
have been marked as visited.

Third Iteration: Finding The Goal Node
The tree shown in Figure 4.20 is the final
tree with the goal node marked as visited,
signalizing that the search was successful.
A total of seventeen nodes have been ex-
panded and twenty six nodes have been vis-
ited. The start node has been expanded for
three times (pro iteration once).

Conclusion

Although the IDA* has the advantage of
using less memory than the A*, it suffers
from the same problem: it is not possible to
model the target environment using nodes.

68



CHAPTER 4. ALGORITHM ANALYSIS 4.4. FRINGE SEARCH

21

2

12 1

start

goal

2 2

1 21 1

Figure 4.20: The tree after the third and fi-
nal iteration with a threshold set to Flimit =
6. The goal node has been found and the
shortest path has been marked with.

4.4 Fringe Search

The FS [5] is a search algorithm that adapts
most of the characteristics of the IDA* (e.g.
usage of a threshold), but makes improve-
ments in its execution due to the fact that
it iterates over the search frontier (fringe)
and continues its search from there, with-
out re-visiting all nodes from the start in
each iteration.

It is shown that FS runs roughly 10-40%
faster than a highly-optimized A*, searching
for a shortest path on a grid.

Search Area

The predefined search area for FS is exactly
the same as the search area defined for the
IDA*. For the sake of convenience the same
tree is shown also in this section (see Fig-
ure 4.21).

21

2

12 1

start

goal

2 2

1 21 1

Figure 4.21: The predefined search area for
the FS example search. The start node and
goal node are each marked.

Node Types

The node types are the same as described
in Node Types (IDA*) on page 66, namely
visited nodes and expanded nodes. Although
IDA* does not use any lists to track nodes,
FS uses two lists for this purpose. One list is
called now and is used for the actual itera-
tion to track nodes that have to be checked
with the set threshold and eventually are
expanded. The other list is called later, is
used for the next iteration and consists of
nodes that have to be checked due to the
fact that the nodes have a higher F score
as the set threshold in the actual iteration.
The new list initially contains only the start
node (also called the root node) and the
later list is empty. Both lists concatenated
can be considered as an open list like the
one A* uses, but in FS’s case the list is not
sorted and this is a performance advantage
due to the fact that no execution time is
used to sort the list.

69



4.4. FRINGE SEARCH CHAPTER 4. ALGORITHM ANALYSIS

Path Scoring

The calculations for the path scoring are ex-
actly the same as described in Path Scoring
(IDA*) on page 66.

Search Algorithm

The following is a short step by step descrip-
tion of the FS algorithm is presented below.
An example search can be found after the
algorithm description.

1. Define the threshold Flimit

2. Put the start node in the now list

3. Do a search using IDDFS with thresh-
old Flimit as limit

(a) Until the now list is not empty,
check the node at the head of the
now list

• If Fheadnode > Flimit remove
the head node from the now
list and add it to the later
list

• If Fheadnode ≤ Flimit the chil-
dren of the head node have
to be checked. Add the head
node’s child nodes to the front
of the now list and discard
the head node from there.

(b) Stop the search if goal node has
been found. Else continue the
search on the subtree of the last
node with an alternative path if a
node has been found with Fnode >
Flimit (standard behavior of ID-
DFS).

4. If FS has finished its search (or the
iteration) and has not found the goal
node with the actual threshold Flimit,
increase Flimit by 1 and restart IDDFS
from the beginning (start node) with
the new threshold.

• Copy the nodes of the later list
to the now list and set the later
list to empty.

5. If the goal node has been found, save
the best path by backtracking it.

Example Search

In this section a step by step example search
using the FS is shown. The predefined search
area used for this example is shown in Fig-
ure 4.21. Just like in the IDA* example
search, the path costs for each step are al-
ready set in each edge of the tree. The
heuristic value H is calculated by summing
up the moves needed to reach the bottom
of the tree with a constant move cost of 1.
The G cost is defined as the cost to get from
the start node to the current node, calcu-
lated by adding the path costs marked at
the (traversed) edges in the tree.

Caption for the Search Area For the
nodes in the predefined search (see Figure 4.21)
the following marks are used:

• Node with black background:
Expanded node positioned in the new
list

• Node with gray border:
Visited node positioned in the later
list

• Node with white background:
Unvisited node

First Iteration The search process be-
gins with a threshold set to Flimit = 4. The
new list contains one node, namely the start
node and the later list is empty at the be-
ginning. The search starts by inspecting the
head node of the new list. Since this is the
start node its children are added to the now
list and the head node is discarded from
there. The search moves on by inspecting
the new head node. Since it is not specified
in which order the nodes have to be inserted
into the new list, it is assumed that the left
child of the root node is the new head node.
The following values are calculated for the
head node:

• Gheadnode = 1

70



CHAPTER 4. ALGORITHM ANALYSIS 4.4. FRINGE SEARCH

• Hheadnode = 3

• Fheadnode = 4

Since the F score of the head node is less
than the actual threshold Flimit = 4 the
child of the head node can be added to front
of the new list and the head node is dis-
carded. The values of the new head node
are defined as follows:

• Gheadnode = 3

• Hheadnode = 2

• Fheadnode = 5

The head node’s F score excesses the thresh-
old Flimit and so it is moved to the later
list. The new head node of the new list is
inspected and the mentioned steps are re-
peated until the new list is empty and all
nodes with an F score below the threshold
are checked. The tree after the first iteration
is shown in Figure 4.22.

21

2

12 1

start

goal

2 2

1 21 1

Figure 4.22: The tree after the first iteration
with a threshold set to Flimit = 4. Two
nodes have been expanded and two nodes
have been marked as visited.

Second Iteration Before starting with the
second iteration, the threshold is incremented
by 1, resulting in Flimit = 5. Also, the nodes
in the later list are moved to the new list,
so that the later list is empty. The new list
now contains two nodes from which the FS
algorithm will continue its search. Again,
the search starts by checking the actual head
node. That is the node in the left subtree of
the root node marked as visited (gray back-
ground) in Figure 4.22. The costs for this
node are the same as calculated in the first
iteration:

• Gheadnode = 3

• Hheadnode = 2

• Fheadnode = 5

Since the threshold is increased, the node’s
F score now fits in the set threshold Flimit =
5. Due to this fact its child nodes are added
to the front of the now list and the head
node is removed from that list. The next
steps are skipped and the tree, after the sec-
ond iteration is finished, is shown in Fig-
ure 4.23.

Third Iteration For the third iteration
the step by step description is skipped, since
it is exactly the same routine as described
in the first and second iteration. The only
thing that changes is the threshold, incre-
mented by 1, so that Flimit = 6. Instead
the result tree, including the shortest path,
is shown in Figure 4.24.

The FS algorithm expanded a total of
eight nodes and visited seventeen nodes. This
is a big improvement compared to the nodes
IDA* expanded and visited in the same tree
(IDA* expanded seventeen nodes and vis-
ited twenty six nodes).

Conclusion

FS is the definitely the most advanced search
algorithm of the A* family, since it has an
advantage compared to the IDA*: it man-
tains its search frontier in a list, avoiding to
revisit after every iteration previous nodes

71



4.4. FRINGE SEARCH CHAPTER 4. ALGORITHM ANALYSIS

21

2

12 1

start

goal

2 2

1 21 1

Figure 4.23: The tree after the second it-
eration with a threshold set to Flimit = 5.
Three nodes have been expanded and three
nodes have been marked as visited.

that already have been checked. The prob-
lem FS has is that it cannot be used to
model the target environment, due to the
complexity of the latter.

21

2

12 1

start

goal

2 2

1 21 1

Figure 4.24: The tree after the third and fi-
nal iteration with a threshold set to Flimit =
6. The goal node has been found and the
shortest path has been marked with red.

72



CHAPTER 4. ALGORITHM ANALYSIS 4.6. CONCLUSION

4.5 Potential Field

Objects are expanded with a force compa-
rable to magnetic ones. The device is at-
tracted by the target’s force. During the
movement it avoids obstacles by being re-
pulsed by them.

This means the moving device solely re-
acts to the current environment and has no
predefined move strategy. Forces based on
obstacles influence the moving object while
it travels through the environment. This
requires the moving device to continuously
interpret the current state and perform ac-
cording to it. Thus no central logic is re-
quired.

However, the moving object might get
stuck when forces compensate each other.

Figure 4.25: An obstacle (red) and the po-
tential field that surrounds it. The forces
repulse the moving device (not shown) from
the obstacle.

Conclusion

Although the approach seems really inter-
esting, it is not feasible because objects can
change their sizes. Also, dynamic behavior
can not be modeled.

4.6 Conclusion

During the Algorithm Analysis many inter-
esting algorithms have been found and eval-
uated. However, because of the target en-
vironment’s high complexity, all approaches
turned out to be not applicable.

73



4.6. CONCLUSION CHAPTER 4. ALGORITHM ANALYSIS

74



Chapter 5

Object Viewer Tool

5.1 Introduction

The developed 3D Engine interacts with ob-
jects that have different representations. To
test algorithms and their behavior in specific
situations a viewer component is required
which allows inspecting the current state of
the engine by displaying the positions and
sizes of the managed objects.

5.2 Functionality

The viewer periodically loads the internal
state of the engine, generates objects and
displays them. The continuous reloads might
seem inefficient but it has been decided that
the computation overhead is negligible, es-
pecially as the viewer is no time critical com-
ponent.

Because the engine was developed in C#
the viewer is also implemented on .NET min-
imizing marshaling overhead. The engine’s
native classes are converted into WPF com-
patible 3D objects and displayed using the
rendering capabilities of .NET.

5.3 Navigation

The object viewer implements standardized
controls used in many physic engines and
computer games. It is based solely on keys.

5.3.1 Move Commands

W

SA D

These commands change the camera’s po-
sition.

W Moves the camera forward to the look-
ing direction

S Moves the camera backward keeping the
looking direction

A Moves the camera and the looking direc-
tion to the left

D Moves the camera and the looking direc-
tion to the right

75



5.3. NAVIGATION CHAPTER 5. OBJECT VIEWER TOOL

5.3.2 Turn Commands

These commands change the direction
where the camera is looking at, keeping the
camera’s position.

↑ Raises the camera’s looking direction

↓ Lowers the camera’s looking direction

← Turns the camera to the left

→ Turns the camera to the right

5.3.3 Other Commands

(space)

Resets the camera’s position and looking
direction to the initial values

76



Chapter 6

Move Tool

6.1 Introduction

The developed 3D Engine exposes a generic
and textual interface. In order to send re-
quests to the engine in an easy manner, a
tool has been developed allowing creation
and controlling of arbitrary command.

6.2 Functionality

The Move Tool shows a list of devices known
to the robotic engine. Those device names
are used to identify concrete robotic arms
on the system.

A move command must contain a device
identifier and an arbitrary set of parameters
which will be interpreted by the engine or
the corresponding device driver.

Once a move request has been generated
from a query and sent to the engine, it is
appended to the list of pending moves and
its state is periodically updated.

6.2.1 Define a Query

All queries entered will be allowed and sent
to the engine. There is no data validation
implemented. However, if input is not ac-
cording to the query grammar1 the engine
might signal an error.

Examples of valid queries are

• move dev 1 x=10mm

1Please refer to the Technical Report for more
information

• move dev 1 x=10cm y=5000um

• move dev 2 x=10mm

6.2.2 Auto completion

The query editor provided in the Move Tool
implements an auto completion feature. It
provides a selection for commonly used com-
mands and parameters. For example, if move
is entered, a list of devices can be selected
from a pop-up menu. Suggestions are also
implemented for often used parameters.

Figure 6.1: After entering the move, a list
with of devices appears

77



6.2. FUNCTIONALITY CHAPTER 6. MOVE TOOL

6.2.3 Controlling Requests

Once a request could be generated from a
query and has been accepted by the engine,
it is displayed in a list of pending move re-
quests which show the current move status.

Figure 6.2: Once a move request has been
accepted by the engine, it can be controlled
with the corresponding buttons

Following operations to control a request
are exposed to the user

• Continue Move

• Pause Move

• Abort Move

6.2.4 Object View

To visualize the current state of the engine,
the already existing viewer component 2 was
integrated into the tool. It can be started
by clicking Show Viewer.

2For more information please refer to the Object
Viewer chapter

78



Chapter 7

Spline Tool

7.1 Introduction

A tool has been developed that calculates
the cubic polynomials for a natural cubic
spline based on given coordinates. The Spline
Tool plots the resulting graph afterwards.

7.2 Functionality

The Spline Tool requires the user to enter at
least two coordinates in the form of x1,y1
x2,y2. After the required coordinates are
entered, the Spline Tool first prints each cu-
bic polynomial of the Spline Si and subse-
quently plots the resulting graph.

7.2.1 Define The Coordinates

Two or more coordinates have to be defined
in the form of x1,y1 x2,y2. After the min-
imum amount of coordinates has been en-
tered, the calculation of the natural cubic
spline can be started by clicking the Calcu-
late Natural Cubic Spline-button or by hit-
ting the ENTER-key.

It is possible to enter floating point co-
ordinate values. The fractional digits of a
floating point number shall be marked with
a . (point). Example: 1.32,3 2,3.4123.

It is possible to enter negative coordinate
values. Example 1,2 3,-4.

Figure 7.1: The Spline Tool plots the graph
of the resulting natural cubic spline and
prints the cubic polynomials.

7.2.2 Toggle On and Off Con-
tent

Since the goal of the Spline Tool is to pro-
vide the needed functionality in its simplest
form, the parts Description, Usage and Ex-
amples can be toggled on or off. This can be
achieved by clicking the yellow button next
to each title. If the browser allows the usage
of local cookies (refer to section 7.4 on page
80 for a detailed overview of the compatible
browsers), depending on the action, the con-
tent of each part is either displayed or hid-
den when the Spline Tool is started. This
functionality should permit the shaping of
the graphical user interface of the Spline
Tool as desired by the user. Since the usage
of the Spline Tool is kept very simple and
the displayed parts Description, Usage and

79



7.5. HEURISTIC EVALUATION CHAPTER 7. SPLINE TOOL

Examples are there if the user needs help or
hints, the reason of the toggle functionality
is that after the first utilization of the Spline
Tool the user does not need them anymore
and can hide them permanently.

7.3 Implementation

The Spline Tool has been implemented us-
ing HTML, CSS and JavaScript. For the
JavaScript part of the Spline Tool, the jQuery1

framework in version 1.3.2 is in used. For
the generation of the graph, the jQuery plu-
gin flot2 is used. The Spline Tool has been
implemented using JavaScript because of the
simple usage and the high portability. To
use the Spline Tool only a supported browser
is required which allows JavaScript execu-
tion.

7.4 Browser Compatibility

It is recommended to use the Spline Tool
either with a current version of the Firefox
browser (version 3.0) or an current version of
the Opera browser (version 9.64), since both
support the full functionality of the Spline
Tool.

Problems

Opera Compatibility

During the compatibility check of the Spline
Tool on different browsers, a serious issue
was found in the Opera browser. The cause
of the issue was the usage of a timeout mech-
anism which was realized using setTimeout
and clearTimeout. clearTimeout() was
called with no parameter but would required
the id received while calling setTimeout.
After solving the problem, the manual tests
for Opera could be run successfully. This
problem could not be reproduced in the Fire-
fox browser, since all the exceptions regard-

1jQuery homepage
2flot (Google Code)

ing erroneous calls of the clearTimeout-function
do not have any effect3.

7.5 Heuristic Evaluation

7.5.1 Purpose

Since the Spline Tool allows an easy way to
visualize natural cubic splines, it is expected
to be used by many people. Therefore, it
is important that the Spline Tool can be
used easily without requiring training. The
purpose of the heuristic evaluation for the
Spline Tool is to provide a better user expe-
rience. Possible flaws and problems in the
user interface design can be identified with
an appropriate heuristic evaluation. In this
part, a list of evaluation heuristics4 is pre-
sented and how each evaluation heuristic is
applied on the graphical user interface of the
Spline Tool.

7.5.2 Usability Heuristics

Visibility of system status

The system should always keep
users informed about what is go-
ing on, through appropriate feed-
back within reasonable time.

The Spline Tool shows a notification that in-
forms the user about the state of the calcu-
lation. Since the only thing the Spline Tool
does is calculating a natural cubic spline and
plotting the graph of the latter, no other
feedback is needed.

Match between system and the real
world

The system should speak the
users’ language, with words, phrases
and concepts familiar to the user,
rather than system-oriented terms.

3window.clearTimeout reference on the Mozilla
Developer Center

4’Ten Usability Heuristics’ by Jacob Nielsen

80

http://jquery.com
http://code.google.com/p/flot/
https://developer.mozilla.org/En/Window.clearTimeout
https://developer.mozilla.org/En/Window.clearTimeout
http://www.useit.com/papers/heuristic/heuristic_list.html


CHAPTER 7. SPLINE TOOL 7.5. HEURISTIC EVALUATION

Browser Version Compatibility Notes

Firefox 3.0.10 Full
Opera 9.64 Full
Chrome 2.0 Partially This issue is caused by the execution of the

Spline Tool from the local file system. Tog-
gle functionality using local cookies is not sup-
ported. Chrome does not allow to set local cook-
ies

I. Explorer 7.0 Partially This issue is caused by the execution of the
Spline Tool from the local filesystem. With-
out explicitly allowing the Spline Tool to exe-
cute within the Internet Explorer, its function-
ality cannot be used (Internet Explorer security
restriction). With the Spline Tool allowed to ex-
ecute within the Internet Explorer and the latter
accepting all cookies, the toggle functionality us-
ing local cookies is still not supported

Konqueror 4.2.2 Partially This issue is caused by the execution of the
Spline Tool from the local filesystem. The tog-
gle functionality using local cookies is not sup-
ported, even if the Allow all cookies-setting is
selected.

Follow real-world conventions, mak-
ing information appear in a nat-
ural and logical order.

The Spline Tool uses words, phrases and
concepts familiar to the user. Information
appears in a natural and logical order.

User control and freedom

Users often choose system func-
tions by mistake and will need a
clearly marked ”emergency exit”
to leave the unwanted state with-
out having to go through an ex-
tended dialogue. Support undo
and redo.

The graphical user interface of the Spline
Tool allows the user to reset the entered
values by hitting the Reset Values-button.
The browser, in which the Spline Tool is ex-
ecuted, allows to undo inputs made via the
input text field.

Consistency and standards

Users should not have to won-
der whether different words, sit-
uations, or actions mean the same
thing. Follow platform conven-
tions.

The Spline Tool is held very simple and only
has one form. The form component consists
only of an input text field and two labeled
buttons, each triggering the described func-
tionality. Thus, the user can handle the
Spline Tool without difficulty and the of-
fered graphical user interface does not lead
to confusion on the side of the user.

Error prevention

Even better than good error
messages is a careful design which
prevents a problem from occur-
ring in the first place. Either
eliminate error-prone conditions
or check for them and present
users with a confirmation option

81



7.5. HEURISTIC EVALUATION CHAPTER 7. SPLINE TOOL

before they commit to the ac-
tion.

A description regarding the usage of the Spline
Tool is provided and is the first paragraph
shown. In the usage description it is also
specified what input is supported by the Spline
Tool. If the user enters invalid input an in-
formative error message shows up that in-
forms the user about the error which oc-
curred and which steps are needed to correct
it.

Recognition rather than recall

Minimize the user’s memory
load by making objects, actions,
and options visible. The user
should not have to remember in-
formation from one part of the
dialogue to another. Instructions
for use of the system should be
visible or easily retrievable when-
ever appropriate.

Since the Spline Tool provides its function-
ality using only a simple form, the user does
not have to remember information. Regard-
ing the instruction for the usage of the Spline
Tool, in the section Usage at the top of the
tool a short usage description is placed. The
usage description describes how the user can
define a correct input and offers in the sec-
tion Examples some predefined examples to
be executed on the fly. With the aid of the
latter the user can easily see what the Spline
Tool does and especially what is needed to
get the Spline Tool started.

Flexibility and efficiency of use

Accelerators – unseen by the
novice user – may often speed
up the interaction for the expert
user such that the system can
cater to both inexperienced and
experienced users. Allow users
to tailor frequent actions.

There is no need of tailoring frequent actions
due to the fact that the Spline Tool is held

very simple in its functionality.

Aesthetic and minimalist design

Dialogues should not contain
information which is irrelevant
or rarely needed. Every extra
unit of information in a dialogue
competes with the relevant units
of information and diminishes their
relative visibility.

The space on the top of the Spline Tool is
used for a short description of the tool and
a simple usage description with some exam-
ples. After the user has used the Spline Tool
for a few times, these descriptions are not
required anymore. The graphical user inter-
face of the Spline Tool provides the function-
ality to hide the descriptions permanently
by setting a user-specific cookie5 and check-
ing the cookie every time the user starts the
Spline Tool. The user has also the possibil-
ity to re-enable the deactivated descriptions.
The provided form per se is held very sim-
ple, since it consists only of an input text
field and two buttons.

Help users recognize, diagnose, and re-
cover from errors

Error messages should be ex-
pressed in plain language (no codes),
precisely indicate the problem,
and constructively suggest a so-
lution.

The error messages shown by the Spline Tool
do not contain error codes. As mentioned
before in section 7.5.2 on page 82, if the
user enters invalid input an informative er-
ror message shows up that informs the user
about the error that occurred and which
steps are needed to correct the error.

Help and documentation

Even though it is better if
the system can be used without

5Please refer to section 7.4 for a compatibility
overview.

82



CHAPTER 7. SPLINE TOOL 7.5. HEURISTIC EVALUATION

documentation, it may be nec-
essary to provide help and doc-
umentation. Any such informa-
tion should be easy to search, fo-
cused on the user’s task, list con-
crete steps to be carried out, and
not be too large.

For information regarding this point please
refer to section 7.5.2 on page 82

83



7.5. HEURISTIC EVALUATION CHAPTER 7. SPLINE TOOL

84



Chapter 8

Conclusion

The discussed algorithms and design al-
low the realization of an efficient, expand-
able and easy adaptable move engine. Be-
cause of the engine’s generic nature, new de-
vices can be supported without requiring an
update in the control logic. Also, all ex-
isting devices benefit from improvements in
the engine.

The developed algorithms take into ac-
count unique properties of the target en-
vironment and thus deliver better perfor-
mance than plain algorithms.

By using intelligent movement planning
with automatic collision resolution, the move
engine enables the calling component to per-
form parallel and optimized moves without
having to specify detailed device parameter
and properties or to implement per-device
control logic. Additionally, computing truly
smooth routes allows higher device speeds
and increases throughput.

The logical system boundaries and con-
trol flows from already developed compo-
nents could be preserved, allowing an easy
integration in existing systems.

85



CHAPTER 8. CONCLUSION

86



Part III

Testing

87





Chapter 9

Test Plan

89



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

9.1 Algorithm Tests

Due to the many algorithms used it is very complex to set up environments which cause
some desired behavior. Because of this, most of the listed tests are realized as automated
tests within the NUnit1 framework.

9.1.1 Logical Map Traversal

The traversal algorithm (Dijkstra’s algorithm) gets a list of nodes and is requested to find
a path through that list of nodes. Depending on the set of nodes given, different behavior
is expected. The following color scheme is used in the graph throughout this chapter:

• Green border: Root node

• Red border: Goal node

• Black border: Normal node

• Blue border, blue edges: Shortest path

• Gray number: Edge cost

LMT-T01: No Nodes

The traversal algorithm must detect invalid input and abort the execution.

LMT-T02: One Waypoint, Goal Node Does Not Exist

If the one waypoint available does not equal to the defined goal node, the traversal algorithm
must return that no path could be found.

A

LMT-T03: One Node, Root Node Is Goal Node

If the one waypoint available equals to the goal node, the traversal algorithm must return
that no additional movements are required. Goal node A’s distance must amount to 0.

1www.nunit.org

90



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

12

A

D

C G

B

E F

3

7

4

5

11

7

6 9

LMT-T04: Multiple Nodes, Goal Node Does Not Exist

Since the goal node is not part of the graph, the algorithm must return that no path could
be found.

A

D

C G

B

E F

3

7

4

5

12
11

7

6 9

LMT-T05: Multiple Nodes, Goal Node Does Exist

Since the goal node is part of the graph, the algorithm must return the shortest path to the
specified goal node. Every node must be set as the goal node, to test if the algorithm finds
a shortest path to all the possible goal nodes (excluding to set the root node as goal node,
since this test case is described in section 9.1.1). The possible variants of this scenario are
presented in the following test cases.

91



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

LMT-T05-01: Case: Goal Node = B The shortest path to the goal node B is: A →
C → G→ B. B’s distance from the root node must amount to 18 after completion.

A

D

C G

B

E F

3

7

4

5

12
11

7

6 9

LMT-T05-02: Case: Goal Node = C The shortest path to the goal node C is: A→ C.
C’s distance from the root node must amount to 3 after completion.

A

D

C G

B

E F

3

7

4

5

12
11

7

6 9

LMT-T05-03: Case: Goal Node = D The shortest path to the goal node D is: A→ D.
D’s distance from the root node must amount to 7 after completion.

92



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

12

A

D

C G

B

E F

3

7

4

5

11

7

6 9

LMT-T05-04: Case: Goal Node = E The shortest path to the goal node E is: A →
D → E. E’s distance from the root node must amount to 19 after completion.

A

D

C G

B

E F

3

7

4

5

12
11

7

6 9

LMT-T05-05: Case: Goal Node = F The shortest path to the goal node F is: A →
D → E → F . F’s distance from the root node must amount to 30 after completion.

93



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

A

D

C G

B

E F

3

7

4

5

12
11

7

6 9

LMT-T05-06: Case: Goal Node = G The shortest path to the goal node G is:
A→ C → G. G’s distance from the root node must amount to 9 after completion.

A

D

C G

B

E F

3

7

4

5

12
11

7

6 9

LMT-T06: Multiple Nodes, Goal Node Does Exist But Is Unreachable

The specified goal node is part of the graph, but cannot be reached from the starting node
F. The algorithm must return that no path could be found since F is not able to reach C.

94



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

C G

B

F

7

6 9

LMT-T07: Multiple Nodes, Goal Node Exists, Two Equal Shortest Paths Exist

Two equal weighted shortest paths lead to the goal node D from the starting node A. The
shortest paths for this graph are the following:

• A → B → D

• A → C → D

It does not matter which path is returned as the shortest path by the algorithm, since only
one shortest path must be selected. D’s distance from the root node must amount to 5 after
completion.

B

D

23

3 C 2

A

B

D

23

3 C 2

A

95



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

LMT-T08: Multiple Nodes, Goal Node Exists, Multiple Equal Shortest Paths
Exist

Multiple equal weighted paths lead to the goal node J from the starting node A. The shortest
paths for this graph are the following:

• A → B → G → J

• A → C → H → J

• A → D → H → J

• A → E → H → J

• A → F → I → J

It does not matter which path is returned as the shortest path by the algorithm, since only
one shortest path must be selected. J’s distance from the root node must amount to 9 after
completion.

C

J

2

4

4

4

4

4

3

3

3

3

3

2

2

E

B

F

D

G

I

HA

LMT-T09: Multiple Nodes, Goal Node Exists, Multiple Equal Paths Exist, Only
One Shortest Path Exists

Test Path 1 Multiple equal weighted paths lead to the goal node Q from the starting
node A, but in the following scenario only one shortest path exists, which is A → D → I →
N → Q. Q’s distance from the root node must amount to 7 after completion.

96



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

C

Q

2

2

2

2

2

2

2

2

2 1

2

2

2

2

2

2

2

2

2

2
E

B

F

D

H

J

G

K

I

M

O

L

P

NA

Test Path 2 Multiple equal weighted paths lead to the goal node Q from the starting
node A, but in the following scenario only one shortest path exists, which is A → C → H
→ M → Q. Q’s distance from the root node must amount to 7 after completion.

C

Q

2

2

2

2

2

2

2

2

2 2

1

2

2

2

2

2

2

2

2

2
E

B

F

D

H

J

G

K

I

M

O

L

P

NA

Test Path 3 Multiple equal weighted paths lead to the goal node Q from the starting
node A, but in the following scenario only one shortest path exists, which is A → E → J →
O → Q. Q’s distance from the root node must amount to 7 after completion.

97



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

C

Q

2

2

2

2

2

2

2

2

2 2

2

2

1

2

2

2

2

2

2

2
E

B

F

D

H

J

G

K

I

M

O

L

P

NA

LMT-P-T10: Multiple Nodes, Goal Node Exists, Nodes Are Connected Ran-
domly With Goal Node

Nodes varying from a few to a hundred thousand are connected randomly together. The
edge costs are missing since they are generated randomly. The root node is connected to
the first node in a list of nodes (black connection). First the brown connections are set up
by using a fixed step length (in the graph below the step length is two). Second the purple
connections are set up with a random step length and last the orange connections are set
up, which point directly to the root node and are set up randomly, too. The purpose of this
test case is to test the performance of our implementation of the Dijkstra’s algorithm.

A B C D E F G H

9.1.2 Collision Resolution

In all collision resolution there is following given scenario

98



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

pc

pt
c

The green object wants to move from pc around the big obstacle to its target position,
the green circle pt. The tests verify the evading mechanism for different initial positions
which might occur. Depending on how the green object is positioned to the obstacle, it
must choose a different way to realize the shortest path to its target position.

Note: In this document Center refers to the intersection point of the dashed lines marked
with c.

Centered

Both balance points stand parallel to each other. In this scenario the device must move
north, east, south or west.

Only the essential test cases are implemented as the correctness of the other test cases
can be derived from the results of the former.

CR-T01: Above Center

The device’s balance point is above the center and its boundaries are within the one of the
obstacle. The device must move north to avoid the obstacle.

CR-T02: North-West of Center

The device’s balance point is equally far away from the north and the west border and still
in the obstacle’s boundaries. The device could move north or west to avoid the obstacle.

99



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

CR-T03: Right Of Center

The device’s balance point is right of the center and its boundaries are within the one of the
obstacle. The device must move west to avoid the obstacle.

CR-T04: South-East of Center

The device’s balance point is equally far away from the south and the east border and still
in the obstacle’s boundaries. The device could move south or east to avoid the obstacle.

CR-T05: Below Center

The device’s balance point is below center and its boundaries are within the one of the
obstacle. The device must move south to avoid the obstacle.

CR-T05: South-West of Center

The device’s balance point is equally far away from the south and the west border and still
in the obstacle’s boundaries. The device could move south or west to avoid the obstacle.

CR-T06: Left Of Center

The device’s balance point is left of the center and its boundaries are within the one of the
obstacle. The device must move east to avoid the obstacle.

100



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

CR-T07: North-East of Center

The device’s balance point is equally far away from the north and the east border and still
in the obstacle’s boundaries. The device could move north and east avoid the obstacle.

CR-T08: Inside North

The device’s balance point is north of the obstacle one’s. Therefore, the device must move
north.

CR-T09: Inside North-East

The device’s balance point is equally far away from the north and east border. Therefore,
the device could move north or east to pass the obstacle.

CR-T10: Inside East

The device’s balance point is right the center. Therefore, the device must move east to pass
the obstacle.

CR-T11: Inside South-East

The device’s balance point is equally far away from the south and east border. Therefore,
the device could move north or east to pass the obstacle.

101



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

CR-T12: Inside South

The device’s balance point is below the center. Therefore, the device must move south to
pass the obstacle.

CR-T13: Inside South-West

The device’s balance point is equally far away from the south and the west border. Therefore,
the device could move south or west to pass the obstacle.

CR-T14: Inside West

The device’s balance point is left the center. Therefore, the device must move west to pass
the obstacle.

CR-T15: Inside North-West

The device’s balance point is equally far away from the north and the west border. Therefore,
the device could move north or west to pass the obstacle.

CR-T16: Intersection North

The device’s balance point is above the center. Therefore, the device must move north to
pass the obstacle.

102



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

CR-T17: Intersection North-East

The device’s balance point is equally far away from the north and the east border. Therefore,
the device could move north or east to pass the obstacle.

CR-T18: Intersection East

The device’s balance point is right of the center. Therefore, the device must move east to
pass the obstacle.

CR-T19: Intersection South-East

The device’s balance point is equally far away from the south and the east border. Therefore,
the device could move south or east to pass the obstacle.

CR-T20: Intersection South

The device’s balance point is below the center. Therefore, the device must move south to
pass the obstacle.

103



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

CR-T21: Intersection South-West

The device’s balance point is equally far away from the south and the west border. Therefore,
the device could move south and east to pass the obstacle.

CR-T22: Intersection West

The device’s balance point is right of the center. Therefore, the device must move east to
pass the obstacle.

CR-T23: Intersection North-West

The device’s balance point is equally far away from the north and the west border. Therefore,
the device could move north or west to pass the obstacle.

CR-T24: Bordering North

The device’s balance point is above the center. Therefore, the device must move north to
pass the obstacle.

104



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

CR-T25: Bordering North-East

The device’s balance point is equally far away from the north and the east border. Therefore,
the device could move north or east to pass the obstacle.

CR-T26: Bordering East

The device’s balance point is right of the center. Therefore, the device must move right to
pass the obstacle.

CR-T27: Bordering South-East

The device’s balance point is equally far away from the south and the east border. Therefore,
the device could move south or east to pass the obstacle.

CR-T28: Bordering South

The device’s balance point is below the center. Therefore, the device must move south to
pass the obstacle.

105



9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

CR-T29: Bordering South-West

The device’s balance point is equally far away from the south and the west border. Therefore,
the device could move south or west to pass the obstacle.

CR-T30: Bordering West

The device’s balance point is left of the center. Therefore, the device must move west to
pass the obstacle.

CR-T31: Bordering North-West

The device’s balance point is equally far away from the north and the west border. Therefore,
the device could move north or west to pass the obstacle.

9.1.3 Cubic Spline Interpolation

The algorithm for calculating natural cubic splines is tested by setting fixed coordinates and
comparing the resulting parameters with precompiled results2. The algorithm is tested with
integer coordinates (e.g. (1,2), (3,4) and (5,6)) and with floating point coordinates (e.g.
(1.1, 3.412), (2.324, 8.132) and (4.123, 10.132)). Since the Spline Tool is implemented using
HTML and JavaScript, no automated tests using the NUnit framework are possible. The
test shall be performed manually.

CSI-T01: No Coordinates

If no coordinates are committed, the algorithm must return that it is not possible to calculate
a natural cubic spline.

2Cubic spline java applet and calculator

106

http://www.arndt-bruenner.de/mathe/scripts/kubspline.htm


CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

CSI-T02: Too Few Coordinates

If less than two coordinates are committed, the algorithm must return that it is not possible
to calculate a natural cubic spline.

CSI-T03: Natural Cubic Spline With Integer Coordinates - Minimum Amount
Of Coordinates

A natural cubic spline is constructed through the coordinates (1, 1) and (2, 2). The resulting
cubic polynomial is S0(x) = 1 + (x− 1) for x ∈ [1; 2]. The plot of the resulting spline is the
following (drawn with MuPAD3):

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

x

y

CSI-T04: Natural Cubic Spline With Integer Coordinates - Normal

A natural cubic spline is constructed through the coordinates (1, 5), (2, 3), (3, 3), (4, 6),
(5, 9) and (6, 6). The resulting cubic polynomials are:

• S0(x) = 0.349(x− 1)3 − 2.349(x− 1) + 5 for x ∈ [1; 2]

• S1(x) = 0.254(x− 2)3 + 1.048(x− 2)2 − 1.301(x− 2) + 3 for x ∈ [2; 3]

• S2(x) = −0.364(x− 3)3 + 1.809(x− 3)2 + 1.555(x− 3) + 3 for x ∈ [3; 4]

• S3(x) = −1.799(x− 4)3 + 0.718(x− 4)2 + 4.081(x− 4) + 6 for x ∈ [4; 5]

• S4(x) = 1.56(x− 5)3 − 4.679(x− 5)2 + 0.12(x− 5) + 9 for x ∈ [5; 6]

The plot of the resulting spline is the following (drawn with MuPAD):

3MuPAD: Computer algebra system

107

http://en.wikipedia.org/wiki/MuPAD


9.1. ALGORITHM TESTS CHAPTER 9. TEST PLAN

1 2 3 4 5 6

3

4

5

6

7

8

9

x

y

CSI-T05: Natural Cubic Spline With Integer Coordinates - Extensive

A natural cubic spline is constructed through the coordinates (1, 8), (2, 9), (3, 6), (4, 7),
(5,12), (6, 13), (7, 16), (8, 9), (9, 8), (10, 13), (11, 23) and (12, 1). The resulting cubic
polynomials are:

• S0(x) = −1.254(x− 1)3 + 2.254(x− 1) + 8 for x ∈ [1; 2]

• S1(x) = 2.272(x− 2)3 − 3.763(x− 2)2 − 1.509(x− 2) + 9 for x ∈ [2; 3]

• S2(x) = 0.166(x− 3)3 + 3.053(x− 3)2 − 2.219(x− 3) + 6 for x ∈ [3; 4]

• S3(x) = −2.936(x− 4)3 + 3.551(x− 4)2 + 4.385(x− 4) + 7 for x ∈ [4; 5]

• S4(x) = 3.578(x− 5)3 − 5.257(x− 5)2 + 2.679(x− 5) + 12 for x ∈ [5; 6]

• S5(x) = −5.377(x− 6)3 + 5.477(x− 6)2 + 2.899(x− 6) + 13 for x ∈ [6; 7]

• S6(x) = 5.928(x− 7)3 − 10.652(x− 7)2 − 2.276(x− 7) + 16 for x ∈ [7; 8]

• S7(x) = −2.335(x− 8)3 + 7.132(x− 8)2 − 5.796(x− 8) + 9 for x ∈ [8; 9]

• S8(x) = 3.414(x− 9)3 + 0.125(x− 9)2 + 1.461(x− 9) + 8 for x ∈ [9; 10]

• S9(x) = −12.319(x− 10)3 + 10.367(x− 10)2 + 11.953(x− 10) + 13 for x ∈ [10; 11]

• S10(x) = 8.864(x− 11)3 − 26.592(x− 11)2 − 4.272(x− 11) + 23 for x ∈ [11; 12]

The plot of the resulting spline is the following (drawn with MuPAD):

108



CHAPTER 9. TEST PLAN 9.1. ALGORITHM TESTS

2 4 6 8 10 12

2

4

6

8

10

12

14

16

18

20

22

x

y

CSI-T06: Natural Cubic Spline With Floating Point Coordinates

A natural cubic spline is constructed through the floating point coordinates (3.34, 5.11),
(4.35, 6.12), (5.67, 3.02), (6.42, 6.12), (10.35, 2.01) and (12.33, 7.03). The resulting cubic
polynomials are:

• S0(x) = −1.32(x− 3.34)3 + 2.347(x− 3.34) + 5.11 for x ∈ [3.34; 4.35]

• S1(x) = 2.655(x− 4.35)3 − 4(x− 4.35)2 − 1.694(x− 4.35) + 6.12 for x ∈ [4.35; 5.67]

• S2(x) = −4.218(x−5.67)3 +6.512(x−5.67)2 +1.622(x−5.67)+3.02 for x ∈ [5.67; 6.42]

• S3(x) = 0.414(x−6.42)3−2.979(x−6.42)2 +4.272(x−6.42)+6.12 for x ∈ [6.42; 10.35]

• S4(x) = −0.32(x−10.35)3+1.9(x−10.35)2+0.028(x−10.35)+2.01 for x ∈ [10.35; 12.33]

4 5 6 7 8 9 10 11 12
2

3

4

5

6

7

x

y

109



9.2. UNIT CONVERSION CHAPTER 9. TEST PLAN

CSI-T07: Natural Cubic Spline With Unsorted Floating Coordinates

A natural cubic spline is constructed through floating point coordinates. The coordinates
used for this test are the same as the ones used in the Natural Cubic Spline With Floating
Coordinates test and are passed in an unsorted order. Since the coordinates are the same,
but differs in the order they are delivered, the calculated parameters for the natural cubic
spline must be the same.

CSI-P-T08: Natural Cubic Spline With Random Floating Point Coordinates

A natural cubic spline is constructed through a great number of randomly generated floating
point coordinates. The goal of this test is to check the performance of the natural cubic
spline algorithm.

CSI-P-T09: Natural Cubic Spline With Random Integer Coordinates

A natural cubic spline is constructed through a great number of randomly generated integer
coordinates. The goal of this test is to check the performance of the natural cubic spline
algorithm.

9.2 Unit Conversion

9.2.1 Metric Tests

The units km,m,dm,cm,mm and µm are supported. In this test following conversions are
tested.

UC-T01: Basic Conversions

Following conversion are tested:
1km = 1000m
1m = 10dm
1dm = 10cm
1cm = 10mm
1m = 1000µm

UC-T02: km Conversions

Following conversion are tested:
2km = 2000m
0.5km = 500m
10km = 100000dm
0.3km = 30000cm
1.4km = 1400000mm
0.1km = 100000000µm

UC-T03: m Conversions

Following conversion are tested:
2m = 0.002km
10m = 100dm

110



CHAPTER 9. TEST PLAN 9.3. SPLINE TOOL

0.3m = 30cm
1.4m = 1400mm
0.1m = 100000µm

UC-T04: dm Conversions

Following conversion are tested:
2dm = 0.0002km
10dm = 1m
0.3dm = 3cm
1.4dm = 140mm
0.1dm = 10000µm

UC-T05: cm Conversions

2cm = 0.00002km
10cm = 0.1m
0.3cm = 0.03dm
1.4cm = 14mm
0.1cm = 1000µm

9.3 Spline Tool

9.3.1 Browser Compatibility

The purpose of these tests is to approve the compatibility of the JavaScript implementation
of the Spline Tool with each browser in test.

BC-T01: Sample Spline - Integer Coordinates

A simple input consisting of four integer coordinates is made by clicking on the Sample
Spline #1 link in the Examples part. As a result, the input text field must have set the
value 0,0 1,1 5,1 6,0, the counter on the right side of the input text field must display
in bold 4 and finally, the browser must display the graph and the three cubic polynomials
S0(x) to S2(x). The following is the resulting graph of the natural cubic spline (drawn with
MuPAD):

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

x

y

BC-T02: Sample Spline - Floating Point Coordinates

A simple input consisting of ten floating point coordinates is made by clicking on the Sample
Spline #4 link in the Examples part. As a result, the input text field must have set the value
0.15,0 1.15,10.5 2.15,8.5 3.15,10.5 4.15,8.5 5.15,10.5 6.15,8.5 7.15,10.5 8.15,8.5

111



9.3. SPLINE TOOL CHAPTER 9. TEST PLAN

9.15,0, the counter on the right side of the input text field must display in bold 10 and
finally it must display the graph and the cubic polynomials S0(x) to S8(x). The following
is the resulting graph of the natural cubic spline (drawn with MuPAD):

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10

x

y

BC-T03: Keylistener

It is possible to hit the ENTER-key after entering the coordinates. The Spline Tool will then
display according to the input either a result or an error message. This only works if the
ENTER-key is hit while the focus is on the input text field.

The test consists of entering the coordinates 1,2 3,4 into the input text field and there-
after hitting the ENTER-key. The Spline Tool must display in the counter the value 2 in bold
and finally it must display the graph and the cubic polynomial S0(x).

BC-T03: Local Cookie Support

The local cookie support is needed for the ability to hide information that the user does
not need anymore. This ability was implemented while conducting an heuristic evaluation.
Local cookies are used when the user starts the Spline Tool from the local file system, e.g.
file://C:/SplineTool/index.html.

The test consists of first hiding each part on the top, namely the Description-, the Usage-
and the Examples-part by clicking the yellow toggle-button next to each title. After hiding
each part, the site is refreshed and as a positive result the previously hidden parts must not
be displayed. If the procedure succeeded up to here, the same procedure must be run with
first opening each part and then refreshing the site. After the refresh the previously opened
parts must be displayed.

BC-T04: No Coordinates

No coordinates are entered. The Spline Tool must detect invalid input and display an
appropriate error message.

112



CHAPTER 9. TEST PLAN 9.3. SPLINE TOOL

BC-T05: Too Few Coordinates

Only one coordinate is entered. Since it is required to enter a minimum of two coordinates,
the Spline Tool must detect invalid input and display an appropriate error message.

BC-T06: Multiple Coordiantes With Same X Value

The value 0,1 1,2 3,4 3,5 are entered. Since it is not allowed to enter multiple coordinates
with the same x value, the Spline Tool must detect invalid input and display an appropriate
error message.

BC-T07: Integer Coordinates

The value 0,1 1,2 are entered manually. The Spline Tool must display the counter with
the value 2 in bold, plot the graph of the natural cubic spline and print the cubic polynomial
S0(x). The following is the resulting graph of the natural cubic spline calculated (drawn
with MuPAD):

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

x

y

BC-T08: Floating Point Coordinates

The value 0.12,1.34 1.56,2.78 are entered manually. The Spline Tool must display the
counter with the value 2 in bold, plot the graph of the natural cubic spline and print the
cubic polynomial S0(x). The following is the resulting graph of the natural cubic spline
calculated (drawn with MuPAD):

113



9.3. SPLINE TOOL CHAPTER 9. TEST PLAN

0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

x

y

BC-T09: Negative Integer Coordinates

The value 0,-1 1,-2 are entered. The Spline Tool must display the counter with the
value 2 in bold, plot the graph of the natural cubic spline and print the cubic polynomial
S0(x). The following is the resulting graph of the natural cubic spline calculated (drawn
with MuPAD):

0.00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-2.0

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

xy

BC-T10: Negative Floating Point Coordinates

The value -1.56,2.78 0.12,-1.34 are entered. The Spline Tool must display the counter
with the value 2 in bold, plot the graph of the natural cubic spline and print the cubic
polynomial S0(x). The following is the resulting graph of the natural cubic spline calculated
(drawn with MuPAD):

114



CHAPTER 9. TEST PLAN 9.3. SPLINE TOOL

-1.5 -1.0
-0.5

-1

1

2

x

y

BC-T11: Unsorted Input

The value 2,3 3,4 1,2 0,1 are entered. The Spline Tool must display the same results
as if the value entered was 0,1 1,2 2,3 3,4. The Spline Tool sorts the entered value
consisting of unordered coordinates by the X values in an ascending order. The following is
the resulting graph of the natural cubic spline calculated (drawn with MuPAD):

0 1 2 3
1

2

3

4

x

y

BC-T12: Reset Inputs

With a click on the Reset Values-button the Spline Tool must reset the input text value,
the counter, the graph of the natural cubic spline and the cubic polynomials.

115



9.3. SPLINE TOOL CHAPTER 9. TEST PLAN

BC-T13: Example Inputs

Each example input in the Examples part is clicked and run. The Spline Tool must fill the
input text field with the coordinates, must display the counter and finally it must plot the
graph of the natural cubic spline and print the cubic polynomials.

116



CHAPTER 9. TEST PLAN 9.4. PARSER TESTS

9.4 Parser Tests

Data Validation

The parser must not accept input data which

• Is not set to an instance

• Is an empty string

• Just contains “move”

• Contains an invalid identifier

• Contains no move parameters

9.4.1 P-T01: Absolute Values

If absolute values are specified they must be written to the resulting MoveRequest class.

Input parameters “x=1 y=10 z=100”

Expected X 1
Expected Y 10
Expected Z 100

9.4.2 P-T02: Positive Relative Values

Existing X 1
Existing Y 2
Existing Z 3
Input parameters “x+=1 y+=1 z+=1”

Expected X 2
Expected Y 3
Expected Z 4

9.4.3 P-T03: Negative Relative Values

Existing X 1
Existing Y 2
Existing Z 3
Input parameters “x-=1 y-=2 z-=3”

Expected X 0
Expected Y 0
Expected Z 0

117



9.4. PARSER TESTS CHAPTER 9. TEST PLAN

118



Chapter 10

Test Report 12.05.2009

Date 12.05.2009
Tester GiAc
Code Revision r616

For detailed test descriptions refer to the chapter 9 on page 90.

119



CHAPTER 10. TEST REPORT 12.05.2009

Algorithm Tests

Logical Map Traversal Test Results

Test Notes Result

LMT-T01 Sucess

LMT-T02 Success

LMT-T03 Success

LMT-T05-01 Success

LMT-T05-02 Success

LMT-T05-03 Success

LMT-T05-04 Success

LMT-T05-05 Success

LMT-T05-06 Success

LMT-T06 Success

LMT-T07 Success

LMT-T08 Success

LMT-T09 Success

LMT-P-T10 Success

120



CHAPTER 10. TEST REPORT 12.05.2009

Collision Resolution Test Results

Test Notes Result

CR-T01 Success

CR-T02 Success

CR-T03 Success

CR-T04 Success

CR-T05 Success

CR-T06 Success

CR-T07 Success

CR-T08 Success

CR-T09 Success

CR-T10 Success

CR-T11 Success

CR-T12 Success

CR-T13 Success

CR-T14 Success

CR-T15 Success

CR-T16 Success

CR-T17 Success

CR-T18 Success

CR-T19 Success

CR-T20 Success

CR-T21 Success

CR-T22 Success

CR-T23 Success

CR-T24 Success

CR-T25 Success

CR-T26 Success

CR-T27 Success

CR-T28 Success

CR-T29 Success

CR-T30 Success

CR-T31 Success

121



CHAPTER 10. TEST REPORT 12.05.2009

Cubic Spline Interpolation Test Results

Test Notes Result

CSI-T-01 Success

CSI-T-02 Success

CSI-T-03 Success

CSI-T-04 Success

CSI-T-05 Success

CSI-T-06 Success

CSI-T-07 Success

CSI-P-T-08 Success

CSI-P-T-09 Success

Unit Conversion Tests

Test Notes Result

UC-T01 Success

UC-T02 Success

UC-T03 Success

UC-T04 Success

UC-T05 Success

Parser Tests

Test Notes Result

P-T01 Success

P-T02 Success

P-T03 Success

122



Chapter 11

Test Report 27.05.2009

Date 27.05.2009

Tester GiAc

Code Revision r643

For detailed test descriptions refer to the chapter 9 on page 90.

123



CHAPTER 11. TEST REPORT 27.05.2009

Algorithm Tests

Logical Map Traversal Test Results

Test Notes Result

LMT-T01 Sucess

LMT-T02 Success

LMT-T03 Success

LMT-T05-01 Success

LMT-T05-02 Success

LMT-T05-03 Success

LMT-T05-04 Success

LMT-T05-05 Success

LMT-T05-06 Success

LMT-T06 Success

LMT-T07 Success

LMT-T08 Success

LMT-T09 Success

LMT-P-T10 Success

124



CHAPTER 11. TEST REPORT 27.05.2009

Collision Resolution Test Results

Test Notes Result

CR-T01 Success

CR-T02 Success

CR-T03 Success

CR-T04 Success

CR-T05 Success

CR-T06 Success

CR-T07 Success

CR-T08 Success

CR-T09 Success

CR-T10 Success

CR-T11 Success

CR-T12 Success

CR-T13 Success

CR-T14 Success

CR-T15 Success

CR-T16 Success

CR-T17 Success

CR-T18 Success

CR-T19 Success

CR-T20 Success

CR-T21 Success

CR-T22 Success

CR-T23 Success

CR-T24 Success

CR-T25 Success

CR-T26 Success

CR-T27 Success

CR-T28 Success

CR-T29 Success

CR-T30 Success

CR-T31 Success

125



CHAPTER 11. TEST REPORT 27.05.2009

Cubic Spline Interpolation Test Results

Test Notes Result

CSI-T-01 Success

CSI-T-02 Success

CSI-T-03 Success

CSI-T-04 Success

CSI-T-05 Success

CSI-T-06 Success

CSI-T-07 Success

CSI-P-T-08 Success

CSI-P-T-09 Success

Unit Conversion Tests

Test Notes Result

UC-T01 Success

UC-T02 Success

UC-T03 Success

UC-T04 Success

UC-T05 Success

Parser Tests

Test Notes Result

P-T01 Success

P-T02 Success

P-T03 Success

126



CHAPTER 11. TEST REPORT 27.05.2009

Spline Tool Browser Compatibility Tests

Firefox (Version 3.0.10)

Test Notes Result

BC-T01 Success

BC-T02 Success

BC-T03 Success

BC-T04 Success

BC-T05 Success

BC-T06 Success

BC-T07 Success

BC-T08 Success

BC-T09 Success

BC-T10 Success

BC-T11 Success

BC-T12 Success

BC-T13 Success

Opera (Version 9.64)

Test Notes Result

BC-T01 Unknown error caused by a call of the SetSampleCoordinates func-
tion. It is possible to enter the coordinates and the counter works. It
is not possible to use one of the links in the Examples part. Also, the
plotting of the graph and the printing of the cubic polynomials does
not work

Fail

BC-T02 Refer to BC-T01 Fail

BC-T03 Refer to BC-T01 Fail

BC-T04 Refer to BC-T01 Fail

BC-T05 Refer to BC-T01 Fail

BC-T06 Refer to BC-T01 Fail

BC-T07 Refer to BC-T01 Fail

BC-T08 Refer to BC-T01 Fail

BC-T09 Refer to BC-T01 Fail

BC-T10 Refer to BC-T01 Fail

BC-T11 Refer to BC-T01 Fail

BC-T12 Refer to BC-T01 Fail

BC-T13 Refer to BC-T01 Fail

127



CHAPTER 11. TEST REPORT 27.05.2009

Chrome (Version 2.0.172.28)

Test Notes Result

BC-T01 Success

BC-T02 Success

BC-T03 Local cookies are not allowed in Chrome1 Provider problem

BC-T04 Success

BC-T05 Success

BC-T06 Success

BC-T07 Success

BC-T08 Success

BC-T09 Success

BC-T10 Success

BC-T11 Success

BC-T12 Success

BC-T13 Success

1Issue 535: Support Cookies on file://

128

http://code.google.com/p/chromium/issues/detail?id=535


Chapter 12

Test Report 02.06.2009

Date 02.06.2009

Tester GiAc

Code Revision r675

For detailed test descriptions refer to the chapter 9 on page 90.

129



CHAPTER 12. TEST REPORT 02.06.2009

Algorithm Tests

Logical Map Traversal Test Results

Test Notes Result

LMT-T01 Sucess

LMT-T02 Success

LMT-T03 Success

LMT-T05-01 Success

LMT-T05-02 Success

LMT-T05-03 Success

LMT-T05-04 Success

LMT-T05-05 Success

LMT-T05-06 Success

LMT-T06 Success

LMT-T07 Success

LMT-T08 Success

LMT-T09 Success

LMT-P-T10 Success

130



CHAPTER 12. TEST REPORT 02.06.2009

Collision Resolution Test Results

Test Notes Result

CR-T01 Success

CR-T02 Success

CR-T03 Success

CR-T04 Success

CR-T05 Success

CR-T06 Success

CR-T07 Success

CR-T08 Success

CR-T09 Success

CR-T10 Success

CR-T11 Success

CR-T12 Success

CR-T13 Success

CR-T14 Success

CR-T15 Success

CR-T16 Success

CR-T17 Success

CR-T18 Success

CR-T19 Success

CR-T20 Success

CR-T21 Success

CR-T22 Success

CR-T23 Success

CR-T24 Success

CR-T25 Success

CR-T26 Success

CR-T27 Success

CR-T28 Success

CR-T29 Success

CR-T30 Success

CR-T31 Success

131



CHAPTER 12. TEST REPORT 02.06.2009

Cubic Spline Interpolation Test Results

Test Notes Result

CSI-T-01 Success

CSI-T-02 Success

CSI-T-03 Success

CSI-T-04 Success

CSI-T-05 Success

CSI-T-06 Success

CSI-T-07 Success

CSI-P-T-08 Success

CSI-P-T-09 Success

Unit Conversion Tests

Test Notes Result

UC-T01 Success

UC-T02 Success

UC-T03 Success

UC-T04 Success

UC-T05 Success

Parser Tests

Test Notes Result

P-T01 Success

P-T02 Success

P-T03 Success

132



CHAPTER 12. TEST REPORT 02.06.2009

Spline Tool Browser Compatibility Tests

Firefox (Version 3.0.10)

Test Notes Result

BC-T01 Success

BC-T02 Success

BC-T03 Success

BC-T04 Success

BC-T05 Success

BC-T06 Success

BC-T07 Success

BC-T08 Success

BC-T09 Success

BC-T10 Success

BC-T11 Success

BC-T12 Success

BC-T13 Success

Opera (Version 9.64)

Note: For a detailed description on how the problem (see section 11) was solved, please
refer to section 7.4 on page 80.

Test Notes Result

BC-T01 Success

BC-T02 Success

BC-T03 Success

BC-T04 Success

BC-T05 Success

BC-T06 Success

BC-T07 Success

BC-T08 Success

BC-T09 Success

BC-T10 Success

BC-T11 Success

BC-T12 Success

BC-T13 Success

133



CHAPTER 12. TEST REPORT 02.06.2009

Chrome (Version 2.0.172.28)

Test Notes Result

BC-T01 Success

BC-T02 Success

BC-T03 Local cookies are not allowed in Chrome1 Provider problem

BC-T04 Success

BC-T05 Success

BC-T06 Success

BC-T07 Success

BC-T08 Success

BC-T09 Success

BC-T10 Success

BC-T11 Success

BC-T12 Success

BC-T13 Success

Internet Explorer (Version 7.0.5730.13)

Note: If the Spline Tool is started from the local file system, e.g. file://C:/SplineTool/index.html,
Internet Explorer does restrict the webpage from using scripts that could access and there-
fore harm the computer. An information bar informs the user about the behavior of the
Internet Explorer. Since the Spline Tool is not equipped with malicious code, the Spline
Tool should be allowed to execute the code fragments in the Internet Explorer. This can
be achieved by clicking on the information bar and selecting Allow Blocked Content....

1Issue 535: Support Cookies on file://

134

http://code.google.com/p/chromium/issues/detail?id=535


CHAPTER 12. TEST REPORT 02.06.2009

Test Notes Result

BC-T01 Success

BC-T02 Success

BC-T03 With the setting Allow All Cookies enabled, the Internet Explorer
still does not support the toggle funtionality using local cookies.
Also, the Internet Explorer does not show up an error regarding
the JavaScript implementation of the cookie-handling routine. This
misbehaviour will not be traced anymore

Fail

BC-T04 Success

BC-T05 Success

BC-T06 Success

BC-T07 Success

BC-T08 Success

BC-T09 Success

BC-T10 Success

BC-T11 Success

BC-T12 Success

BC-T13 Success

Konqueror (Version 4.2.2)

Test Notes Result

BC-T01 Success

BC-T02 Success

BC-T03 With the setting Accept all cookies enabled, the Konqueror still does
not support the toggle-funtionality using cookies. Also, the Kon-
queror JavaScript Debugger does not show up an error regarding the
implementation of the cookie-handling routine. This misbehaviour
will not be traced anymore

Fail

BC-T04 Success

BC-T05 Success

BC-T06 Success

BC-T07 Success

BC-T08 Success

BC-T09 Success

BC-T10 Success

BC-T11 Success

BC-T12 Success

BC-T13 Success

135



CHAPTER 12. TEST REPORT 02.06.2009

136



Part IV

Project Management

137





Chapter 13

Software Development Plan

13.1 Changes

Date Author Change

22. Feb. 2009 StJu Initial draft
23. Feb. 2009 StJu Changed Week 9+10 from Construction to Elaboration
26. Feb. 2009 GiAc Added section Organization, External Interfaces and Infras-

tructure. Merged Work Packages into this document
28. Feb. 2009 GiAc Added work packages Elaboration 1
05. Mar. 2009 StJu Changes according to decisions from meeting1

13. Mar. 2009 StJu Changed formatting and updated work packages of Elabora-
tion 1 : Architecture Document is no standalone document
anymore and will be included in the Technical Report

14. Mar. 2009 GiAc Added first drafts of the work packages for Elaboration 2
15. Mar. 2009 StJu Planned Elaboration 2
18. Mar. 2009 StJu Added deliverables of remaining iterations based on the

project schedule
19. Mar. 2009 GiAc Added new work packages to the second and current iteration

of the Elaboration phase
27. Mar. 2009 StJu Planned Elaboration 3
31. Mar. 2009 StJu Updated work packages for the third iteration of the Elabora-

tion phase
13. Apr. 2009 StJu Planned Elaboration 4
27. Apr. 2009 StJu Planned Construction 1
10. May 2009 StJu Planned Construction 2
24. May 2009 StJu Planned Construction 3
06. June 2009 StJu Planned Transition 1
10. June 2009 StJu Finished document

1http://stephanjud.ch/trac/robotic/wiki/OrganizationMinutes

139



13.2. ABBREVIATIONS CHAPTER 13. SOFTWARE DEVELOPMENT PLAN

13.2 Abbreviations

Abbreviations used for people in this Bachelor Thesis are described below.

Abbreviation Name

StJu Stephan Jud
GiAc Giuseppe Accaputo
JoLe Joas Leemann
HaHu Hansjörg Huser

13.3 Organization

Both team members will be writing documentation, developing code and being responsible
for testing.

Name Email Task

Stephan Jud sjud@hsr.ch Project team member
Giuseppe Accaputo gaccaput@hsr.ch Project team member

13.4 External Interfaces

Name Email Task

Hansjörg Huser hhuser@hsr.ch Adviser
Joas Leemann joas.leemann@tecan.com Contact at Tecan Schweiz AG
S. Zettel - s.zettel@ascentiv.ch Expert

13.5 Infrastructure

The following tools are used for development and documentation.

Name Version

Visual Studio 2008 9.0
Microsoft .NET Framework 3.5
LATEX2 3.1415926
Tortoise SVN 3.0
Trac3 [https://stephanjud.ch/trac/robotic] 0.11.2

13.6 Process

An agile RUP has been chosen as software development process. It allows an iterative
advancement and its adaptable elements can be applied according to the project’s needs.
Iterations used during the project are Inception, Elaboration, Construction, and Transition.

2Document markup language and document preparation system for the TeX typesetting program
3Web-based project management tool and interface to Subversion

140



CHAPTER 13. SOFTWARE DEVELOPMENT PLAN 13.6. PROCESS

After every iteration Work Packages which must be completed in the next iterations
will be defined. Additionally, an Iteration Assessment will be created once an iteration has
completed, presenting the general project situation and state of Work Packages.

The artifacts which are requested by the project stakeholders will be created. Before
every iteration those required arifacts will be defined and noted under Deliverables.

Due to the large amount of research in this Bachelor Thesis the Elaboration phase will
take four iterations.

Meetings, minutes, absences, guidelines, To-dos and questions will be noted on wiki pages
within the Trac environment.

Meetings will be held every second week with the project stakeholders. Agenda items
will be noted on the corresponding Trac page as well as in emails sent to the attendees before
the meeting starts.

Time tracking is realized with a separate Excel spreadsheet.

141



13.6. PROCESS CHAPTER 13. SOFTWARE DEVELOPMENT PLAN

1
3
.6

.1
Ite

ra
tio

n
P

la
n

W
eek

1
+

2
1
6
.0

2
-
2
7
.0

2
.2

0
0
9

W
eek

3
+

4
0
2
.0

3
-
1
3
.0

3
.2

0
0
9

W
eek

5
+

6
1
6
.0

3
-
2
7
.0

3
.2

0
0
9

W
eek

7
+

8
3
0
.0

3
-
1
0
.0

4
.2

0
0
9

W
eek

9
+

1
0

1
3
.0

4
-
2
4
.0

4
.2

0
0
9

W
eek

1
1
+

1
2

2
7
.0

4
-
0
8
.0

5
.2

0
0
9

W
eek

1
3
+

1
4

1
1
.0

5
-
2
2
.0

5
.2

0
0
9

W
eek

1
5
+

1
6

2
5
.0

5
-
0
5
.0

6
.2

0
0
9

W
eek

1
7

0
8
.0

6
-
1
2
.0

6
.2

0
0
9

In
cep

tio
n

1

E
la

b
o
ra

tio
n

1
a

E
la

b
o
ra

tio
n

2

E
la

b
o
ra

tio
n

3
b

E
la

b
o
r

a
tio

n
4

C
o
n

stru
ctio

n
1
c

C
o
n

stru
ctio

n
2

C
o
n

stru
ctio

n
3

T
ra

n
sitio

n
1
d

M
a
rk

s
itera

tio
n

s
w

ith
m

ilesto
n

es
M

a
rk

s
o
n

e
w

eek
b

u
ff

ers
a
M

1
:

O
v
era

ll
a
rch

itectu
re

a
n

d
fu

n
ctio

n
a
lity

fo
r

th
e

3
D

en
g
in

e
h

a
s

b
een

d
efi

n
ed

.
bM

2
:

M
o
v
e

rela
ted

a
lg

o
rith

m
s

h
a
v
e

b
een

d
esig

n
ed

.
R

eq
u

irem
en

ts
a
n

d
test

ca
ses

h
a
v
e

b
een

d
efi

n
ed

.
cM

3
:

M
o
v
e

to
o
l

h
a
s

b
een

crea
ted

,
a
llo

w
in

g
fa

st
d

eb
u

g
g
in

g
a
n
d

testin
g
.

d
M

4
:

P
ro

d
u

ct
d

eliv
ery

a
n

d
a
ccep

ta
n

ce

142



CHAPTER 13. SOFTWARE DEVELOPMENT PLAN 13.7. WORK PACKAGES

13.7 Work Packages

13.7.1 Inception 1

ID Person Package Dep.4 Cost5

I1.1 StJu Set up development infrastructure including Subver-
sion and Trac

- 5

I1.2 All Create Software Development Plan - 8
I1.3 All Create Iteration Assessment for first iteration of the

Inception phase
- 2

I1.4 All Gather basic information about target environment - 3
I1.5 All Create list of possible relevant algorithms I1.4 20
I1.6 All Add milestones to Software Development Plan I1.2 3
I1.7 All Define Work Packages for first iteration of the Elabo-

ration phase
- 2

I1.8 All Start writing Technical Report I1.1 35
RT.16 All Meetings - 6

Deliverables

• Project Schedule

• Work Packages for the first iteration of the Elaboration phase

• Iteration Assessment of the Inception phase

4Dependency on other Work Packages
5Effort in hours for people specified in column Person
6Recurring Task (RT): Task whose execution spans over multiple iterations or recurs periodically

143



13.7. WORK PACKAGES CHAPTER 13. SOFTWARE DEVELOPMENT PLAN

13.7.2 Elaboration 1

ID Person Package Dep. Cost

E1.1 All Search for more path finding algorithms - 10
E1.2 All Evaluate and study gathered algorithms in detail I1.5 22
E1.3 All Create the Software Architecture Document - 5
E1.4 All Create prototype for the software architecture E1.4 5
E1.5 All Define test scenarios where algorithms can be evaluated

on
I1.4 5

E1.6 All Define the most important requirements for the project - 5
E1.7 All Define Work Packages for the second iteration of the

Elaboration phase
- 2

RT.1 All Meetings - 6
RT.2 All Update Technical Report I1.8 18
RT.3 All Update Software Development Plan I1.2 6

Deliverables

• Iteration Assessment of the first iteration in the Elaboration phase

• Work Packages for the second iteration in the Elaboration phase

• First version of the Requirements Document

144



CHAPTER 13. SOFTWARE DEVELOPMENT PLAN 13.7. WORK PACKAGES

13.7.3 Elaboration 2

ID Person Package Dep. Cost

E2.1 All Create software architecture prototype including basic
control flow

E1.4 26

E2.2 All Define architectural design - 10
E2.3 All Detailed requirements analysis - 5
E2.4 All Evaluate relevant algorithms with regard to the target

system
E1.2 15

RT.1 All Meetings - 6
RT.2 All Update Technical Report - 16
RT.3 All Update Software Development Plan - 5

Deliverables

• Iteration Assessment of the second iteration in the Elaboration phase

• Work Packages for the third iteration in the Elaboration phase

• Architecture prototype

145



13.7. WORK PACKAGES CHAPTER 13. SOFTWARE DEVELOPMENT PLAN

13.7.4 Elaboration 3

ID Person Package Dep. Cost

E3.1 All Create draft implementation of path finding and collision
avoidance

- 12

E3.2 All Define which algorithms shall be used E2.4 12
E3.3 All Define and implement test scenarios E2.3 17
E3.4 All Finish describing the architectural design of the engine E2.5 17
RT.1 All Meetings - 6
RT.2 All Update Technical Report - 10
RT.3 All Update Software Development Plan - 5
RT.4 All Check state of every document and update document if

necessary
- 6

Deliverables

• Iteration Assessment of the third iteration in the Elaboration phase

• Work Packages for the fourth iteration in the Elaboration phase

• Test Document

• Requirements Document

• The Technical Report specifies the used algorithms in detail

146



CHAPTER 13. SOFTWARE DEVELOPMENT PLAN 13.7. WORK PACKAGES

13.7.5 Elaboration 4

ID Person Package Dep. Cost

E4.1 All Implement collision detection / avoidance E3.1 8
E4.2 GiAc Evaluate how to compute round paths around obstacles - 10
E4.3 StJu Design how to extend collision avoidance with support

for dependent subdevices
E3.4 4

E4.4 All Improve the Viewer Tool - 10
E4.5 StJu Evaluate the benefit of using late move updates E3.4 5
E4.6 All Use buffer to complete unfinished tasks - 15
RT.1 All Meetings - 4
RT.2 All Update Technical Report - 10
RT.3 All Update Software Development Plan - 10
RT.4 All Check state of every document and update document if

necessary
- 8

Deliverables

• Iteration Assessment of the fourth iteration in the Elaboration phase

• Work Packages for the first iteration in the Construction phase

• Implemented tests

• Working 2D collision avoidance implementation

147



13.7. WORK PACKAGES CHAPTER 13. SOFTWARE DEVELOPMENT PLAN

13.7.6 Construction 1

ID Person Package Dep. Cost

C1.1 StJu Implement collision detection / avoidance E4.1 12
C1.2 GiAc Implement waypoints to spline converter - 20
C1.3 All Improve the Viewer Tool - 8
C1.4 StJu Extend collision avoidance with support for dependent

subdevices
E4.3 10

C1.5 All Complete project management documents so they can be
reviewed

- 15

RT.1 All Meetings - 4
RT.2 All Update Technical Report - 10
RT.3 All Update Software Development Plan - 5

Deliverables

• Iteration Assessment of the first iteration in the Construction phase

• Work Packages for the second iteration in the Construction phase

• Project management documents

• Move Tool

148



CHAPTER 13. SOFTWARE DEVELOPMENT PLAN 13.7. WORK PACKAGES

13.7.7 Construction 2

ID Person Package Dep. Cost

C2.1 StJu Extend collision avoidance with support for ranges C1.4 10
C2.2 GiAc Adapt route smoothing algorithm to 3D waypoints C1.2 20
C2.3 StJu Improve the request parser - 15
C2.4 All Describe software architecture - 5
C2.5 All Prepare engine for realistic environments - 5
RT.1 All Meetings - 4
RT.2 All Update Technical Report - 20
RT.3 All Update Software Development Plan - 5

Deliverables

• Draft of the technical report

• Iteration Assessment of the second iteration in the Construction phase

• Work Packages for the third iteration in the Construction phase

149



13.7. WORK PACKAGES CHAPTER 13. SOFTWARE DEVELOPMENT PLAN

13.7.8 Construction 3

ID Person Package Dep. Cost

C3.1 All Describe software architecture - 6
C3.2 StJu Prepare engine for realistic environments - 6
C3.3 GiAc Create test report template and perform first test - 5
C3.4 All Define “Aims and Objectives” - 3
C3.5 All Prepare management summary - 4
C3.6 All Add cubic spline support to move engine - 4
C3.7 GiAc Gather information about document printing - 5
C3.8 All Use buffer to complete unfinished tasks - 28
RT.1 All Meetings - 8
RT.2 All Update Technical Report - 10
RT.3 All Update Software Development Plan - 5

Deliverables

• Thesis Description

• Iteration Assessment of the third iteration in the Construction phase

150



CHAPTER 13. SOFTWARE DEVELOPMENT PLAN 13.7. WORK PACKAGES

13.7.9 Transition 1

ID Person Package Dep. Cost

T1.1 All Review documents for release (Layout and spell checking) - 18
T1.2 All Review programs for release - 8
T1.3 All Write personal reports - 4
T1.4 All Finish Management Summary - 2
T1.5 All Print documents and create CD - 4
T1.6 All Finish A0 poster - 2
T1.7 All Update Abstract - 2
T1.8 All Hand in Thesis description - 4
RT.1 All Meetings - 4

Deliverables

• All Iteration Assessments including the one of the Transition phase

• Project Management documents

• Technical Report

• Test Documents

• Relevant Wiki Pages as documents

• Tools and 3D Engine

• Tool descriptions

• Management Summary

• Personal Reports

• Thesis Description

151



13.7. WORK PACKAGES CHAPTER 13. SOFTWARE DEVELOPMENT PLAN

152



Chapter 14

Iteration Assessments

153



14.1. INCEPTION 1 CHAPTER 14. ITERATION ASSESSMENTS

14.1 Inception 1

Iteration Overview

Phase Inception
Iteration Iteration 1
From Week 1 (16.02 - 20.02.2009)
To Week 2 (23.02 - 27.02.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

Artifact

Software Development Plan
Risk Management
Technical Report

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

I1.1 StJu Set up development infrastructure including Subver-
sion and Trac

1 OK

I1.2 All Create Software Development Plan 1 OK
I1.3 All Create Iteration Assessment for first iteration of the

Inception phase
1 OK

I1.4 All Gather basic information about target environment 2 OK
I1.5 All Create list of possible relevant algorithms 1 OK
I1.6 All Add milestones to Software Development Plan 1 OK
I1.7 All Define working packages for first iteration of the Elab-

oration phase
1 OK

I1.8 All Start writing Technical Report 1 OK

154



CHAPTER 14. ITERATION ASSESSMENTS 14.1. INCEPTION 1

Next Iteration

ID Person Package Priority

E1.1 All Continue writing Technical Report 1
E1.2 All Continue to search for relevant algorithms 1
E1.3 All Evaluate and study gathered algorithms in detail 1
E1.4 All Create the Software Architecture Document 2
E1.5 All Create prototype for software architecture 2
E1.6 All Define test scenarios where algorithms can be evaluated on 1
E1.7 All Define the most important requirements for the project 1
E1.8 All Define work packages for the second iteration of the Elabora-

tion phase
1

Decisions

None

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Create a Software Development Plan defin-
ing milestones, RUP phases and iteration
details.

The Software Development Plan has been
created and the milestones have been de-
fined. The iteration length has been set
to two weeks. The iteration plan has been
defined in the Software Development Plan.
The iteration plan consists of one iteration
for the Inception phase, four iterations for
the Elaboration phase, three iterations for
the Construction phase and one iteration
for the Transition phase.

Evaluate possible algorithms for path find-
ing and collision avoidance. Create a list
of the possible relevant algorithms and de-
scribe their functionality.

Possible algorithms have been found and
described in the Technical Report.

Gather basic information about the target
environment

The target environment was presented in a
short introduction, including its function-
ality and its elements. The simulator soft-
ware was also shown.

Adherence to Plan

The iteration executed according to plan completing on schedule. All tasks could
be completed as planned and there are no work packages left for the next iteration. Much
effort has been invested in this early stage into the Technical Report which already shows
its basic structure and organization.

The infrastructure has been set up and is ready and essential domain knowledge has
been gathered so fast progress is expected in the next iteration.

155



14.2. ELABORATION 1 CHAPTER 14. ITERATION ASSESSMENTS

14.2 Elaboration 1

Iteration Overview

Phase Elaboration
Iteration Iteration 1
From Week 3 (02.03 - 06.03.2009)
To Week 4 (09.03 - 13.03.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

Artifact

Requirements Analysis
Prototype

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

E1.1 All Search for more (relevant) algorithms 1 OK
E1.2 All Evaluate and study gathered algorithms in detail 1 OK
E1.3 All Create the Software Architecture Document 2 OK
E1.4 All Create prototype for the Software Architecture 2 OK
E1.5 All Define test scenarios where algorithms can be evalu-

ated on
1 OK

E1.6 All Define the most important requirements for the
project

1 OK

E1.7 All Define Work Packages for the second iteration of the
Elaboration phase

1 OK

Next Iteration

ID Person Package Priority

E2.1 All Create software architecture prototype including basic control
flow

1

E2.2 All Define architectural design 2
E2.3 All Detailed requirements analysis 1
E2.4 All Evaluate relevant algorithms with regard to the target system 1
RT.1 All Meetings 1
RT.2 All Update Technical Report 1
RT.3 All Update Software Development Plan 1

156



CHAPTER 14. ITERATION ASSESSMENTS 14.2. ELABORATION 1

Decisions

There will be no independent Software Architecture Document. Its content will be included
in the already existing Technical Report.

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Search for more algorithms and evaluate
the algorithm’s functionality

The search for more algorithms has been
continued. New algorithms have been
found and evaluated. A description of ev-
ery algorithm found has been added to the
Technical Report, including an exemplary
search demonstrating the algorithm’s pro-
cedure.

Create Software Architecture Document An initial version of the Software Architec-
ture Document has been written. It has
been decided that this document will be
moved into the Technical Report (Chapter
Realization, subsection Design).

Create prototype A prototype has been created, including
a graphical user interface for testing pur-
poses. Basic control flow has been imple-
mented demonstrating the involved compo-
nents.

Define test cases for algorithms A Test Plan has been created with test
cases for collision resolution algorithms.

Define the most important requirements for
the project

A first version of the Requirements Doc-
ument has been created. The most im-
portant requirements have been noted and
have to be reviewed and discussed with
JoLe.

Adherence to Plan

The iteration executed according to plan completing on schedule. All tasks could
be completed as planned.

New relevant algorithms have been found. Search and evaluation of new algorithms could
be completed as planned.

A first prototype has been created, including a graphical user interface for testing pur-
poses.

157



14.3. ELABORATION 2 CHAPTER 14. ITERATION ASSESSMENTS

14.3 Elaboration 2

Iteration Overview

Phase Elaboration
Iteration Iteration 2
From Week 5 (16.03 - 20.03.2009)
To Week 6 (23.03 - 27.03.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

Artifact

Software Architecture Document (inside Technical Report)

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

E2.1 All Create software architecture prototype including basic
control flow

1 OK

E2.2 All Define architectural design 2 OK
E2.3 All Detailed requirements analysis 1 OK
E2.4 All Evaluate relevant algorithms with regard to the target

system
1 OK

Next Iteration

ID Person Package Priority

E3.1 All Create draft implementation of path finding and collision
avoidance

1

E3.2 All Define which algorithms shall be used 1
E3.3 All Define and implement test scenarios 1
E3.4 All Finish describing the architectural design of the engine 1
RT.1 All Meetings 1
RT.2 All Update Technical Report 1
RT.3 All Update Software Development Plan 1
RT.4 All Check state of every document and update document if nec-

essary
1

Decisions

The Requirements Document does not need to be extended. The currently coarse require-
ments are sufficient.

158



CHAPTER 14. ITERATION ASSESSMENTS 14.3. ELABORATION 2

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Architectural prototype The logical flow and included components
of the engine have been defined. Addition-
ally, a first implementation has been cre-
ated for feasibility purposes.
The algorithms developed from the Techni-
cal Report have been partially implemented
and tested for practicability. Ambiguities
which have got evident during realization
have been corrected in the Technical Re-
port.

Requirements analysis Because the main focus of the project is
to provide strategies and algorithms capa-
ble of serving as robotic engine, the cur-
rently defined requirements have not been
extended. The existing mostly non func-
tional requirements do give enough infor-
mation for creating the system.

Evaluate algorithms Two new algorithms, Potential Fields and
Voronoi Diagram have been found.
They are not likely to be implemented di-
rectly but could give valuable approaches
which can be applied to the existing com-
ponents

Adherence to Plan

The iteration executed according to plan completing on schedule. All tasks could
be completed as planned.

The existing prototype was extended showing feasibility of approaches defined in the
Technical Report document.

159



14.4. ELABORATION 3 CHAPTER 14. ITERATION ASSESSMENTS

14.4 Elaboration 3

Iteration Overview

Phase Elaboration
Iteration Iteration 3
From Week 7 (30.03 - 03.04.2009)
To Week 8 (06.04 - 10.04.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

Artifact

Test Document
Requirements Document

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

E3.1 All Create draft implementation of path finding and col-
lision avoidance

1 OK

E3.2 All Define which algorithms shall be used 2 OK
E3.3 All Define and implement test scenarios 1 OK
E3.4 All Finish describing the architectural design of the en-

gine
1 OK

Next Iteration

ID Person Package Priority

E4.1 All Implement collision detection / avoidance 1
E4.2 GiAc Evaluate how to compute round paths around obstacles 1
E4.3 StJu Design how to extend collision avoidance with support for

dependent subdevices
2

E4.4 All Improve the Viewer Tool 2
E4.5 StJu Evaluate the benefit of using late move updates 1
E4.6 All Use buffer to complete unfinished tasks 1
RT.2 All Update Technical Report 1
RT.3 All Update Software Development Plan 1
RT.4 All Check state of every document and update document if nec-

essary
1

160



CHAPTER 14. ITERATION ASSESSMENTS 14.4. ELABORATION 3

Decisions

None

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Create a draft implementation of the path
finding and collision avoidance

A first draft implementation of the path
finding has been completed. For the graph
traversal the Dijkstra algorithm has been
implemented. Additionally, an initial ver-
sion of collision avoidance has been imple-
mented.

Define which algorithms shall be used The basic algorithms needed to perform
moves are defined. Detailed evading mech-
anism and strategies have not been defined
yet though.

Define and implement test scenarios For the graph traversal a total of sixteen
test cases plus one performance test have
been defined and implemented. For the col-
lision resolution a total of thirty-three test
cases have been defined.

Adherence to Plan

The iteration executed according to plan completing on schedule. All tasks could
be completed as planned.

An initial version of the algorithms has been realized. The test document has been
extended and a first set of test cases have been implemented using NUnit.

161



14.5. ELABORATION 4 CHAPTER 14. ITERATION ASSESSMENTS

14.5 Elaboration 4

Iteration Overview

Phase Elaboration
Iteration Iteration 4
From Week 9 (13.04 - 17.04.2009)
To Week 10 (20.04 - 24.04.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

Artifact

Project Management documents

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

E4.1 All Implement collision detection / avoidance 1 OK
E4.2 GiAc Evaluate how to compute round paths around obsta-

cles
1 OK

E4.3 StJu Design how to extend collision avoidance with support
for dependent subdevices

2 OK

E4.4 All Improve the viewer tool 2 OK
E4.5 StJu Evaluate the benefit of using late move updates 1 OK
E4.6 All Use buffer to complete unfinished tasks 1 OK

Next Iteration

ID Person Package Priority

C1.1 StJu Implement collision detection / avoidance 1
C1.2 GiAc Implement waypoints to spline converter 1
C1.3 All Improve the viewer tool 1
C1.4 StJu Extend collision avoidance with support for dependent sub-

devices
1

C1.5 All Complete project management documents 1
RT.1 All Meetings 1
RT.2 All Update Technical Report 1
RT.3 All Update Software Development Plan 1
RT.4 All Check state of every document and update document if nec-

essary
1

162



CHAPTER 14. ITERATION ASSESSMENTS 14.5. ELABORATION 4

Decisions

Project Management documents will reviewed by the adviser in the next iteration.

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Improve Viewer Tool The tool is now ready to be used for debug-
ging and testing. An autocompletion mech-
anism has been added which allows faster
query creation. The overall usability also
has been improved.

Evaluate round moves A mathematical solution was found which
enables the definition of smooth round
moves. It is planned to describe round
moves with the help of spline curves.

Use buffer The documentation has been extensively
reviewed and improved. No major changes
in documentation are expected in further
iterations.

Extend Collision Avoidance Collision avoidance has been implemented
according to the definitions in the Tech-
nical Report. The major approaches de-
fined in the report fulfill the expectations.
The current code base will be incrementally
extended with various features during the
next iterations.

Adherence to Plan

The iteration executed according to plan completing on schedule. All tasks could
be completed as planned. However, the planned buffer must be used to update and review
all documents in this iteration.

All defined unit tests could be implemented. They will be used intensely in the next
iteration where the main focus will be improving collision avoidance.

163



14.6. CONSTRUCTION 1 CHAPTER 14. ITERATION ASSESSMENTS

14.6 Construction 1

Iteration Overview

Phase Construction
Iteration Iteration 1
From Week 11 (27.04 - 02.05.2009)
To Week 12 (04.05 - 08.05.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

None

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

C1.1 StJu Implement collision detection / avoidance 1 OK
C1.2 GiAc Implement waypoints to spline converter 1 OK
C1.3 All Improve the viewer tool 1 OK
C1.4 StJu Extend collision avoidance with support for depen-

dent subdevices
1 OK

C1.5 All Complete project management documents 1 OK

Next Iteration

ID Person Package Priority

C2.1 StJu Extend collision avoidance with support for ranges 1
C2.2 GiAc Adapt route smoothing algorithm to 3D waypoints 1
C2.3 StJu Improve the request parser 2
C2.4 All Describe software architecture 1
C2.5 All Prepare engine for realistic environments 1

Decisions

The project management documents are formal complete. Wiki pages will also be included
in final document. The technical report will be reviewed in the next iteration.

164



CHAPTER 14. ITERATION ASSESSMENTS 14.6. CONSTRUCTION 1

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Support for dependent subdevices The extensions to support dependent sub-
devices required have been described and
implemented. However, there is still func-
tionality missing to compute realistic move-
ments. Those extensions will be imple-
mented in this iteration.

Complete project management documents The documents have been carefully re-
viewed and presented to HaHu. Its current
composition and degree of detail is appro-
priate for this Thesis.

Splines converter The cubic spline formula has been imple-
mented. There were concerns about how
round moves should be described so a de-
vice can follow the computed curve in the
desired correctness. One approach has been
developed and will be presented in the next
iteration.

Adherence to Plan

The iteration executed according to plan completing on schedule. All tasks could
be completed as planned. Emerging issues like how to describe round moves and collision
avoidance related ones could be resolved. They influenced the work packages for the next
iteration however.

165



14.7. CONSTRUCTION 2 CHAPTER 14. ITERATION ASSESSMENTS

14.7 Construction 2

Iteration Overview

Phase Construction
Iteration Iteration 2
From Week 13 (11.05 - 15.05.2009)
To Week 14 (18.05 - 22.05.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

Artifact

Draft of the technical report

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

C2.1 StJu Extend collision avoidance with support for ranges 1 OK
C2.2 GiAc Adapt route smoothing algorithm to 3D waypoints 1 OK
C2.3 StJu Improve the request parser 2 OK
C2.4 All Describe software architecture 1 NOK
C2.5 All Prepare engine for realistic environments 1 NOK

Next Iteration

ID Person Package Priority

C3.1 All Describe software architecture 1
C3.2 StJu Prepare engine for realistic environments 1
C3.3 GiAc Create test report template and perform first test 1
C3.4 All Define “Aims and Objectives” 1
C3.5 All Prepare management summary 1
C3.6 All Add cubic spline support to move engine 1
C3.6 GiAc Gather information about document printing 2
C3.7 All Use buffer to complete unfinished tasks 1

Decisions

Cubic Spline interpolation formula should be implemented that it can serve as base for a
new hardware supported smooth curve implementation.

166



CHAPTER 14. ITERATION ASSESSMENTS 14.7. CONSTRUCTION 2

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Code Review The existing code base has been reviewed
and edited where necessary.

Ranges support The robotic engine now supports range con-
straints. They can be either posed by a de-
vice itself or by constraints of the parent
devices.

Route Smoothing The cubic spline algorithm and how to ap-
ply it to devices has been extensively re-
searched. For problems like missing hard-
ware support, different axis speeds and ac-
celeration limitations approaches have been
developed. Additionally, a dedicated tool
has been created which allows fast and easy
visualization and verification of splines.

Unit handling The units used internally for computation
are not dependent of the incoming values
anymore. A conversion layer has been im-
plemented which frees the different compo-
nents of having to use the same units.

Adherence to Plan

Not all tasks could be completed. The work on those tasks will be continued in the
next iteration. Because the next iteration contains a buffer, no delays are expected because
of the additional tasks.

167



14.8. CONSTRUCTION 3 CHAPTER 14. ITERATION ASSESSMENTS

14.8 Construction 3

Iteration Overview

Phase Construction
Iteration Iteration 3
From Week 15 (25.05 - 29.05.2009)
To Week 16 (02.06 - 05.06.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

Artifact

Thesis Description

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

C3.1 All Describe software architecture 1 OK
C3.2 StJu Prepare engine for realistic environments 1 OK
C3.3 GiAc Create test report template and perform first test 1 OK
C3.4 All Define “Aims and Objectives” 1 OK
C3.5 All Prepare management summary 1 OK
C3.6 All Add cubic spline support to move engine 1 OK
C3.6 GiAc Gather information about document printing 2 OK
C3.7 All Use buffer to complete unfinished tasks 1 OK

Next Iteration

ID Person Package Priority

T1.1 All Review documents for release. Including layout and spell
checking

1

T1.2 All Review programs for release 1
T1.3 All Write personal reports 1
T1.4 All Finish Management Summary 1
T1.5 All Print documents and create CD 1
T1.6 All Finish A0 poster 1
T1.7 All Update Abstract 1
T1.8 All Hand in Thesis description 1

Decisions

None

168



CHAPTER 14. ITERATION ASSESSMENTS 14.8. CONSTRUCTION 3

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Spline Tool A tool has been created which allows an
easy visualization of cubic spline. The
properties of splines could be demonstrated
to the stakeholders with help of that tool.

Route Smoothing Much time has been invested to create a de-
tailed description of how cubic spline curves
can be enabled on the target platform.

Technical Report The technical report has been extensively
reviewed. Chapters have been reorganized
or have been moved to more appropriate
places leading to a more understandable
composition.

Architecture The architectural model has been de-
scribed. As discussed with the stakehold-
ers, just interesting and non obvious cases
were described.

Wiki Handling A dedicated tool has been created which
allows exporting content of Wiki pages into
the documents which will be handed in.

Adherence to Plan

The iteration executed according to plan completing on schedule. A detailed plan
has been created on the Wiki page describing deadlines for every day of the next iteration.

169



14.9. TRANSITION 1 CHAPTER 14. ITERATION ASSESSMENTS

14.9 Transition 1

Iteration Overview

Phase Transition
Iteration Iteration 1
From Week 17 (08.06.2009)
To Week 17 (12.06.2009)
Span 2 weeks

Attendees

GiAc
StJu

Created Artifacts

Artifact

All Iteration Assessments including the one of the Transition phase
Project Management documents
Technical Report
Test Documents
Relevant Wiki Pages as documents
Tools and 3D Engine
Tool descriptions
Management Summary
Personal Reports
Thesis Description

Iteration Objectives Reached

Current Iteration

ID Person Package Priority State

T1.1 All Review documents for release. Including layout and
spell checking

1 OK

T1.2 All Review programs for release 1 OK
T1.3 All Write personal reports 1 OK
T1.4 All Finish Management Summary 1 OK
T1.5 All Print documents and create CD 1 OK
T1.6 All Finish A0 poster 1 OK
T1.7 All Update Abstract 1 OK
T1.8 All Hand in Thesis description 1 OK

Decisions

None

170



CHAPTER 14. ITERATION ASSESSMENTS 14.9. TRANSITION 1

Results Relative to Evaluation Criteria

Evaluation Criteria Iteration Results

Review documents for release All documents have been successfully re-
viewed by both the team members and the
responsible authorities at Tecan Schweiz
AG for the approval of the documentation,
Rainer Kerkmann and Joas Leemann.

Review programs for release All the programs have been successfully re-
viewed by both the team members.

Finish relevant documents All the relevant documents have been cre-
ated and printed, and are ready to be
handed in.

Adherence to Plan

The iteration executed according to plan completing on schedule. The Bachelor
Thesis is ready to be handed in.

171



14.9. TRANSITION 1 CHAPTER 14. ITERATION ASSESSMENTS

172



173



15.1. CHANGES CHAPTER 15. RISK MANAGEMENT

Chapter 15

Risk Management

15.1 Changes

Date Author Change

22. Feb. 2009 StJu Initial version
23. Feb. 2009 StJu Set likelihood of risk R.1 to 30
27. Feb. 2009 GiAc Added new risks (R.9, R.10, R.11)
05. Mar. 2009 StJu Added fallback actions in risk description. Removed R.9

(Refactoring-Risk) because it is not a real risk
25. Mar. 2009 StJu A simple simulator has been implemented reducing severities

of R.10 and R11 to 40 and 10
13. Apr. 2009 StJu

• Evaluation of algorithms is mostly completed. Reducing
likelihood of risk R.3 from 80 to 20

• The existing prototypes are capable of handling generic
situations. Reducing likelihood of R.5 from 40 to 20

• Changes in the target system are unlikely to happen.
Reducing likelihood of R.4 from 20 to 10

10. May 2009 StJu

• Set likelihood of R.4 and R.3 from both 20 to 0 because
the requirements are clear

• Set likelihood of R.5 from 40 to 20 because the algo-
rithm can handle generic scenes

• Set likelihood of R.8 from 80 to 60 because many test
cases have already been implemented

27. May 2009 StJu Set likelihood of R.5 from 20 to 0 because the algorithm is
generic. Likelihood of R7 is set from 20 to 0 because the
outcome is fairly clear.

09. June 2009 StJu Set likelihood of R6,R8,R10 and R11 to 0 because the pre-
sented solution fulfills the requirements.

10. June 2009 StJu Set likelihood of R1 and R2 to 0 because the release is over.174



CHAPTER 15. RISK MANAGEMENT 15.2. RISKS

1
5
.2

R
is

k
s

R
is

ks
w

hi
ch

m
ig

ht
en

da
ng

er
pr

oj
ec

t’
s

su
cc

es
s

so
rt

ed
ac

co
rd

in
g

to
th

ei
r

im
pa

ct
1

ID
R

is
k

C
on

se
q
u

en
ce

C
ou

n
te

rm
ea

su
re

Im
p

ac
t

R
.8

E
rr

or
si

tu
at

io
ns

ar
e

no
t

re
pr

es
en

te
d

in
te

st
ca

se
s

U
ne

xp
ec

te
d

an
d

er
ro

ne
ou

s
be

-
ha

vi
or

of
th

e
so

ft
w

ar
e

sh
ow

s
up

du
ri

ng
ex

ec
ut

io
n

P
re

ve
n
ti

on
:

U
se

te
st

-d
ri

ve
n

de
ve

lo
p-

m
en

t
as

pr
im

ar
y

so
ft

w
ar

e
de

ve
lo

pm
en

t
te

ch
ni

qu
e

to
av

oi
d

er
ro

rs
an

d
pl

an
re

g-
ul

ar
m

ee
ti

ng
s

to
di

sc
us

s
po

ss
ib

le
er

ro
r

si
tu

at
io

ns
F
al

lb
ac

k
:

P
la

n
an

d
en

fo
rc

e
ea

rl
y

sy
s-

te
m

te
st

s.

2
∗

0
=

0

R
.6

T
he

al
go

ri
th

m
do

es
no

t
m

at
ch

pe
rf

or
m

an
ce

ex
pe

c-
ta

ti
on

s

T
he

al
go

ri
th

m
de

si
gn

ed
lim

it
s

sy
st

em
th

ro
ug

hp
ut

P
re

ve
n
ti

on
:

G
at

he
r

in
fo

rm
at

io
n

ab
ou

t
ho

w
th

e
al

go
ri

th
m

is
us

ed
an

d
se

t
up

au
to

m
at

ic
pe

rf
or

m
an

ce
ch

ec
ks

F
al

lb
ac

k
:

R
em

ov
e

co
m

pl
ex

it
y

in
th

e
al

go
ri

th
m

by
re

m
ov

in
g

ch
ec

ks
an

d
ot

he
r

co
m

pl
ex

pa
rt

s
of

th
e

al
go

ri
th

m
.

P
ro

fil
e

th
e

al
go

ri
th

m
an

d
op

ti
m

iz
e

co
st

ly
pa

rt
s

as
go

od
as

po
ss

ib
le

.

2
∗

0
=

0

C
o
n
ti
n
u
ed

o
n

n
ex

t
pa

ge
..

.

1
Im

p
a
c
t:

S
ev

er
it

y
[0

-3
]
∗

L
ik

el
ih

o
o
d

[%
]

175



15.2. RISKS CHAPTER 15. RISK MANAGEMENT

C
o
n
ti
n
u
ed

ID
R

is
k

C
on

se
q
u

en
ce

C
ou

n
te

rm
ea

su
re

Im
p

ac
t

R
.1

0
T

he
si

m
ul

at
or

do
es

no
t

m
at

ch
ex

ac
tl

y
th

e
ta

rg
et

en
vi

ro
nm

en
t

in
it

s
fu

nc
-

ti
on

al
it

y
an

d
ex

ec
ut

io
n

T
he

al
go

ri
th

m
ca

nn
ot

be
ap

pl
ie

d
to

th
e

ta
rg

et
en

vi
ro

nm
en

t
be

-
ca

us
e

of
di

sc
re

pa
nc

ie
s

be
tw

ee
n

th
e

si
m

ul
at

or
an

d
th

e
ta

rg
et

en
-

vi
ro

nm
en

t.
T

he
al

go
ri

th
m

co
ul

d
ca

us
e

pr
ob

le
m

s
on

th
e

ta
rg

et
en

-
vi

ro
nm

en
t.

P
re

ve
n
ti

on
:

C
la

ri
fy

th
e

ac
tu

al
st

at
e

of
th

e
si

m
ul

at
or

an
d

it
s

fu
nc

ti
on

al
it

y.
C

la
ri

fy
al

so
if

th
er

e
ar

e
di

ffe
re

nc
es

be
-

tw
ee

n
th

e
si

m
ul

at
or

an
d

th
e

ta
rg

et
en

-
vi

ro
nm

en
t.

F
al

lb
ac

k
:

T
es

t
im

pl
em

en
ta

ti
on

di
-

re
ct

ly
on

th
e

ta
rg

et
en

vi
ro

nm
en

t
an

d/
or

se
t

up
te

st
en

vi
ro

nm
en

t
w

hi
ch

is
ab

le
to

de
te

rm
in

e
w

he
th

er
a

co
lli

si
on

oc
cu

rs
.

1
∗

0
=

0

R
.1

Il
ln

es
s

of
te

am
m

em
be

rs
Sh

or
te

ne
d

te
am

an
d

de
la

ys
in

th
e

pr
oj

ec
t

sc
he

du
le

P
re

ve
n
ti

on
:

P
er

io
di

ca
lly

di
sc

us
s

pr
oj

ec
t

st
at

e
so

pa
rt

ne
r

ca
n

ta
ke

ov
er

w
or

k.
A

dd
it

io
na

lly
pl

an
ti

m
e

bu
ffe

rs
.

F
al

lb
ac

k
:

R
em

ov
e

lo
w

-p
ri

or
it

y
fe

a-
tu

re
s

3
∗

0
=

0

R
.2

D
at

a
lo

ss
So

ur
ce

co
de

or
do

cu
m

en
ts

ge
t

lo
st

P
re

ve
n
ti

on
:

C
he

ck
-i

n
w

or
k

of
te

n
an

d
ba

ck
up

se
rv

er
re

gu
la

rl
y

F
al

lb
ac

k
:

R
es

to
re

la
te

st
ba

ck
up

s
an

d,
if

ne
ed

ed
,

re
w

ri
te

m
is

si
ng

do
cu

m
en

ts
an

d
so

ur
ce

co
de

.
If

ne
ce

ss
ar

y
in

-
cr

ea
se

co
ns

tr
uc

ti
on

ph
as

e
or

re
m

ov
e

lo
w

-p
ri

or
it

y
fe

at
ur

es

3
∗

0
=

0

C
o
n
ti
n
u
ed

o
n

n
ex

t
pa

ge
..

.

176



CHAPTER 15. RISK MANAGEMENT 15.2. RISKS

C
o
n
ti
n
u
ed

ID
R

is
k

C
on

se
q
u

en
ce

C
ou

n
te

rm
ea

su
re

Im
p

ac
t

R
.1

1
So

ft
w

ar
e

bu
g

in
th

e
si

m
u-

la
to

r
T

he
al

go
ri

th
m

s
ca

nn
ot

be
te

st
ed

on
th

e
si

m
ul

at
or

an
d

th
e

bu
g

fix
-

in
g

ca
us

es
de

la
ys

in
th

e
pr

oj
ec

t
sc

he
du

le

P
re

ve
n
ti

on
:

T
he

si
m

ul
at

or
sh

ou
ld

be
te

st
ed

an
d

it
s

fu
nc

ti
on

al
it

y
sh

ou
ld

be
ap

pr
ov

ed
du

ri
ng

th
e

E
la

bo
ra

ti
on

ph
as

e
so

no
de

la
ys

in
th

e
In

ce
pt

io
n

ph
as

e
ca

us
ed

by
ap

pe
ar

in
g

bu
gs

in
th

e
si

m
-

ul
at

or
m

us
t

be
ex

pe
ct

ed
.

F
al

lb
ac

k
:

D
ir

ec
tl

y
te

st
on

th
e

ta
rg

et
sy

st
em

.
D

is
cu

ss
pr

oc
ee

di
ng

w
it

h
st

ak
e-

ho
ld

er
s.

2
∗

0
=

20

R
.7

D
ev

el
op

m
en

t
an

d
re

qu
ir

e-
m

en
ts

sh
ow

di
sc

re
pa

nc
ie

s
T

he
al

go
ri

th
m

de
ve

lo
pe

d
do

es
no

t
sa

ti
sf

y
ex

pe
ct

at
io

ns
P

re
ve

n
ti

on
:

P
er

io
di

ca
lly

ve
ri

fy
pr

oj
ec

t
st

at
e

w
it

h
st

ak
eh

ol
de

rs
F
al

lb
ac

k
:

In
cr

ea
se

co
ns

tr
uc

ti
on

ph
as

e
or

re
m

ov
e

lo
w

-p
ri

or
it

y
fe

at
ur

es

2
∗

0
=

0

R
.5

T
he

al
go

ri
th

m
de

ve
lo

pe
d

is
to

o
fo

cu
se

d
on

th
e

ta
r-

ge
t

sy
st

em

T
he

al
go

ri
th

m
de

ve
lo

pe
d

ca
nn

ot
be

re
us

ed
fo

r
fu

tu
re

ve
rs

io
ns

of
th

e
en

vi
ro

nm
en

t

P
re

ve
n
ti

on
:

T
he

in
it

ia
l

al
go

ri
th

m
m

us
t

w
or

k
w

it
h

ba
si

c
ge

om
et

ri
ca

l
ob

-
je

ct
s.

If
po

ss
ib

le
,

te
st

th
e

al
go

ri
th

m
on

ot
he

r
sy

st
em

s
to

av
oi

d
fo

cu
si

ng
on

th
e

ta
rg

et
sy

st
em

.
F
al

lb
ac

k
:

R
ew

ri
te

al
go

ri
th

m
an

d/
or

im
pl

em
en

t
di

ffe
re

nt
cl

as
se

s
of

al
go

-
ri

th
m

s.
C

ho
os

e
on

e
al

go
ri

th
m

w
hi

ch
sh

ou
ld

be
co

nt
in

ue
d.

W
ri

te
th

e
al

go
-

ri
th

m
to

w
or

k
effi

ci
en

tl
y

on
th

e
av

ai
l-

ab
le

ta
rg

et
sy

st
em

.

2
∗

0
=

0

C
o
n
ti
n
u
ed

o
n

n
ex

t
pa

ge
..

.

177



15.2. RISKS CHAPTER 15. RISK MANAGEMENT

C
o
n
ti
n
u
ed

ID
R

is
k

C
on

se
q
u

en
ce

C
ou

n
te

rm
ea

su
re

Im
p

ac
t

R
.3

T
he

ev
al

ua
ti

on
of

th
e

al
-

go
ri

th
m

s
ta

ke
s

m
or

e
ti

m
e

th
an

ex
pe

ct
ed

T
he

E
la

bo
ra

ti
on

ph
as

e
ha

s
to

be
ex

te
nd

ed
ca

us
in

g
de

la
ys

in
th

e
pr

oj
ec

t
sc

he
du

le

P
re

ve
n
ti

on
:

D
efi

ne
al

go
ri

th
m

s
th

at
ca

n
be

co
ns

id
er

ed
an

d
ex

am
in

e
ca

re
-

fu
lly

th
e

al
go

ri
th

m
s,

di
sc

ar
di

ng
al

go
-

ri
th

m
s

th
at

ar
e

no
t

su
it

ab
le

F
al

lb
ac

k
:

R
em

ov
e

fe
at

ur
es

an
d/

or
in

-
cr

ea
se

el
ab

or
at

io
n

ph
as

e.
D

is
cu

ss
pr

o-
ce

ed
in

g
w

it
h

st
ak

eh
ol

de
rs

.

1
∗

0
=

0

R
.4

T
he

ta
rg

et
sy

st
em

ch
an

ge
s

du
ri

ng
th

e
pr

oj
ec

t
A

ss
um

pt
io

ns
an

d
an

al
ys

is
be

-
co

m
e

in
va

lid
P

re
ve

n
ti

on
:

P
er

io
di

ca
lly

ch
ec

k
st

at
e

of
th

e
ta

rg
et

en
vi

ro
nm

en
t

F
al

lb
ac

k
:

D
efi

ne
w

it
h

st
ak

eh
ol

de
rs

w
hi

ch
fe

at
ur

es
m

us
t

be
re

m
ov

ed
or

in
-

cr
ea

se
co

ns
tr

uc
ti

on
ph

as
e

2
∗

0
=

0

178



Chapter 16

Requirements

16.1 Aims and Objectives

A robotic engine capable of planning and executing movements for robotic arms at Tecan
Schweiz AG shall be developed. The engine will not be used in a productive environment
right after the projects ends. In fact, it will serve as basis for further developments.

Therefore, the requirements are kept rather general and are mainly based on the original
thesis description.

Tecan Schweiz stellt Laborgeräte mit Pipettierrobotern her. Hauptaufgabe der
Bachelorarbeit ist es, ein Konzept zu entwickeln, welches einen beliebigen, unter
Umständen parallelen Bewegungsablauf der einzelnen Roboter kollisionsfrei pla-
nen und ausführen vermag.

In einer ersten Phase sollen verschiedene Algorithmen und Strategien für die
Bewegungssteuerung analysiert und auf ihre Zweckmässigkeit überprüft werden.

Danach soll ein Konzept erarbeitet werden, wie solch eine Bewegungssteuerung-
seinheit implementiert werden kann. Das Konzept sollte:

• Die Steuerungslogik exakt beschreiben

• Die benötigte Softwarearchitektur definieren

In einem letzten Schritt soll das erarbeitete Konzept als Prototyp implementiert
und für das existierende Softwareframework vorbereitet werden.

16.2 Requirements

16.2.1 Functionality

FU1: Path Finding

A set of algorithms shall be defined which are capable of finding the shortest collision free
path of a roboter from a start position to an end position.

179



16.2. REQUIREMENTS CHAPTER 16. REQUIREMENTS

FU2: Collision Avoidance

An algorithm shall be defined which is able to compute collision-free paths for a roboter
within the target system. No generic strategies shall be used. Instead, an evading path
depending on the specific collision situation shall be computed making optimal use of the
capabilities of all involved components.

FU3: Collision Resolution

An algorithm shall be defined which is capable of solving roboter collisions should they be
detected. The resolution mechanism shall consider the costs of evading mechanism on all
components involved and choose the one which causes least run time delay.

16.2.2 Reliability

Equal requests must result in equal action given the same state of the environment.

16.2.3 Usability

Because the robotic engine is not directly exposed to the end user, there is no need for a
graphical user interface for controlling the engine.

16.2.4 Performance

Calculation Time

The calculation time when computing a move shall not show exponential growth. Small
requests which just changes positions for just a few millimeters must cause a negligible
computation delay.

Memory Usage

There are no specific limitations regarding memory usage.

16.2.5 Supportability

Expandability

The move engine can be tailored to replace each algorithm by a better algorithm if needed

Generic Algorithms

The engine shall make use of already existing device drivers which expose physical properties.
Those values must be interpreted by the engine to plan, coordinate and perform movements
of multiple devices. No additional logic may be added to the device drivers.

Configurability

The move engine shall be configurable by other components. Exposed settings shall be:

• The internal calculation unit

• Minimal distance between objects

180



CHAPTER 16. REQUIREMENTS 16.2. REQUIREMENTS

• Algorithmic behavior

– Default evading axis

16.2.6 Design Constraints

Framework

The underlying framework, which is responsible for the communication has already been
implemented. Its API and the used communication protocol are given and may not be
changed.

Environment

The robotic engine must be written in C# running on .NET version 3.5. The application
will run on a desktop computer.

181



16.2. REQUIREMENTS CHAPTER 16. REQUIREMENTS

182



Chapter 17

Quality Management

17.1 Code Reviews

Beginning with the Construction phase, a code review is held once in a week in which a
systematic examination of the source code is conducted. The goal of the code reviews is to
minimize mistakes in the code like bugs and performance issues and to increase the overall
quality of the code by applying refactoring patterns where possible.

For the code reviews the over-the-shoulder approach is used which consists of a com-
mented guidance through the code by the author. The code metrics generation in Visual
Studio 2008 serves as additional guidance for possible problems.

17.2 Document Reviews

Beginning with the Elaboration phase, each committed document is counterchecked by a
team member. The goal of this method is to maintain a high quality standard and up-to-date
state of documents.

17.3 Bug Tracking

Detected bugs in the code are reported and tracked using the ticketing system provided by
Trac1. Bugs must be added with a detailed description. Steps how to reproduce must be
added as well if applicable. The bug priority is determined by the team members and serves
as indicator which bugs are critical and must be resolved with high priority.

With help of a ticketing system it can be ensured that no bugs get forgotten. The list of
open bugs helps to keep an overview whether the project state is according to the iteration
plan.

17.4 Testing

A set of tests must be described until the last Elaboration phase2 verifying correct interaction
between modules and intended data processing of all major components. Tests in that

1For more information refer to the Software Development chapter
2See chapter Test Plan

183



17.5. TOOLS CHAPTER 17. QUALITY MANAGEMENT

document must be defined by the developers while specifying and describing the components.
At the end of every Construction and the Transition phase, all cases in the test plan

must be tested. The project revision and the corresponding test result must be noted in a
separate document3.

17.5 Tools

17.5.1 NUnit

NUnit is a free utility for unit testing .NET classes. Before a change set is committed, all
existing unit tests must be executed and pass. The tests which do not pass because of an
ongoing change must be marked with the Ignore tag.

Unit tests must be written for core components.

17.5.2 FXCop

FXCop is a free code analysis tool from Microsoft. It analyzes the given assemblies and
calculates a set of metrics from it. The results are displayed in a report. Following rules are
included in the report:

• Design Rules

• Globalization Rules

• Naming Rules

• Performance Rules
3Refer to the Test Reports

184



CHAPTER 17. QUALITY MANAGEMENT 17.6. CODING GUIDELINES

• Usage Rules

Unfortunately, many false positives get found. This makes it impossible to periodically
review all warnings carefully. Therefore, in the last Construction phase the developers must
review all warnings and decide whether severity and applicability of a warning justifies a
change.

17.5.3 CSharp Compiler

Before checking-in, the code must compile successfully and must not cause compiler warn-
ings.

17.6 Coding Guidelines

Standard .NET conventions are used45 for all source code. For the formatting settings a
Visual Studio 2008 compatible settings file provided by Tecan Schweiz AG is used.

4.NET Design Guidelines http://msdn2.microsoft.com/en-us/library/ms229042.aspx
5.NET Naming Guidelines http://msdn.microsoft.com/en-us/library/ms229045.aspx

185

http://msdn2.microsoft.com/en-us/library/ms229042.aspx
http://msdn.microsoft.com/en-us/library/ms229045.aspx


17.7. GUIDELINES FOR TEX CHAPTER 17. QUALITY MANAGEMENT

17.7 Guidelines for TEX

For a better and a unique documentation style, the Documentation Guidelines have been
defined as follows:

1. Write negation and short forms out, e.g. cannot, does not, it is

2. Write in passive form. Avoid the usage of “we”

3. Write out numeric values in full where applicable, e.g. one, two, three

(a) This rule is not applicable to mathematical equations

4. When a new term is introduced it should be highlighted in italics only the first time

(a) Use \emph over \textit (both italic)

5. Acronyms should be introduced as following: “[...]Iterative Deepening Depth-First
Search (IDDFS)[...].The IDDFS is used to[...]”

(a) Define an acronym only if it is used in the following paragraphs

(b) If an acronym is defined in the abstract it should not be used in the document
body. The acronym should be redefined in the document body if the need arises

6. Mark unfinished parts or parts that have to be reviewed in the LaTeX code with %todo
(LaTeX comment)

7. Words in a title (sections, subsections, sub subsections, paragraphs) start with a capital
letter. This rule does not apply to prepositions (in, at, on, etc.) and to articles (the,
a/an)

(a) Example: Third Iteration: Finding the Goal Node

8. Figures should be labeled with a foregoing “img:”

(a) Example: \label{img:a beautiful picture}

9. Sections should be labeled with a foregoing “sec:”

(a) Example: \label{sec:a simple section}

10. For referring to figures use see or refer to in the text, followed by the reference to the
graphic and surrounded by brackets

(a) Example: “[...]a sample tree (see Figure 1.2.3.4).[...]”

11. For referring to sections within subsections (in LaTeX marked as \subsubsection) use
the following constellation: “As mentioned in \textit{ABC} on page \pageref{section:the section}”

186



Chapter 18

Minutes and Meetings

In the following sections the Trac Wiki pages concerning project management are listed.

187



CHAPTER 18. MINUTES AND MEETINGS

Previous Meetings

Friday, 5th June

• Attendees: StJu, GiAc, JoLe, RaKe

• Location: Tecan, Männedorf

• Time: ?

• Purpose

– Set up development environment

– Discuss project state with JoLe

Thursday, 4th June

• Attendees: StJu, GiAc, HaHu

• Location: HSR

• Time: 13:00

• Purpose

– Discuss technical report

Tuesday, 26th May

• Attendees: StJu, GiAc, JoLe

• Location: HSR

• Time: 13:30

• Purpose

– Discuss project state

– Present Round Moves Info

Tuesday, 26th May

• Attendees: StJu, GiAc, HaHu

• Location: HSR

• Time: 10:15

• Purpose

– Discuss project state

– Round Moves Info

– Review technical report

– Prepare Thesis description for cfurrer.

188



CHAPTER 18. MINUTES AND MEETINGS

Tuesday, 12th May

• Attendees: StJu, GiAc, JoLe

• Location: Tecan, Männedorf

• Time: 13:30

• Purpose

– Discuss project state

– Round Moves Info

– Review project management documents

Tuesday, 26th May

• Attendees: StJu, GiAc, JoLe, HaHu

• Location: HSR

• Time: 10:15

• Purpose

– Discuss project state and deliverables

– Discuss project management document review

Thursday, 7th May

• Attendees: StJu, GiAc, HaHu

• Location: HSR, 6.010

• Time: 16:30

• Purpose

– Discuss project state and deliverables

– Discuss document review

Tuesday, 28th April

• Attendees: StJu, GiAc, JoLe

• Location: Tecan

• Time: 13:30

• Purpose

– Discuss project state and deliverables

– Late updates of device movements

– Demonstrate waypoint generation

189



CHAPTER 18. MINUTES AND MEETINGS

Thursday, 23rd April

• Attendees: StJu, GiAc, HaHu

• Location: HSR

• Time: 16:00

• Purpose

– Discuss project state and deliverables
– Demonstrate waypoint generation

Monday, 20th April

• Attendees: GiAc, Louis-Sepp Willimann

• Location: HSR

• Time: 17:15

• Purpose

– Discuss possibilities to construct a curve that goes through defined control points
(coordinates)

Wednesday, 8th April

• Attendees: StJu, GiAc, JoLe, HaHu

• Location: HSR

• Time: 16:00

• Purpose

– Discuss project state and deliverables

• Questions

– How’s the state of the documents?
– Testing

Thursday, 19th March

• Attendees: StJu, GiAc, JoLe

• Location: Tecan

• Time: 17:30

• Purpose

– Discuss project state and deliverables, Requirements

• Questions

– NDA?
– Software Architecture Document in own document?

190



CHAPTER 18. MINUTES AND MEETINGS

Thursday, 19th March

• Attendees: StJu, GiAc, HaHu

• Location: HSR, 6.010

• Time: 16:00

• Purpose

– Discuss project state and deliverables

• Questions

– Software Architecture Document in own document?

Thursday, 5th March

• Attendees: StJu, GiAc, HaHu

• Location: HSR, 6.010

• Time: 16:00

• Purpose

– Discuss project schedule, milestones and deliverables

• Notes

– Send in management docs and other technical documents until Monday, the 2nd
of March

Thursday, 4th March

• Attendees: JoLe, StJu

• Location: Tecan, Männedorf

• Time: 13:00

• Purpose

– Review of management documents after inception phase

Thursday, 19th February

• Attendees: StJu, GiAa, HaHu, JoLe

• Location: Tecan, Männedorf

• Time: 16:15

• Purpose

– Kickoff Meeting

191



CHAPTER 18. MINUTES AND MEETINGS

Minutes

04.06.09, Construction 3 - 3

Attendees

StJu, GiAc, HaHu

Location

HSR, 6.010

Decisions

• Short description has to be updated

• Introduction section has to be updated

• Management Summary should be included in the documentation with an own chapter
and therefore should be written in English

• The documentation should be reordered: Management Summary, Technical Report,
Project Management, Testing, Appendix

Tasks

• Update short description of the Bachelor Thesis

• Expand the Introduction chapter with a description regarding the non-deterministic
property of the Liquid Handling Platform

• Reorder the documentation

• Include Management Summary

26.05.09, Construction 3 - 2

Attendees

StJu, GiAc, JoLe

Location

Tecan, Männedorf

Decisions

• Next meeting will be held on Friday the 5th of June at Tecan Männedorf. The date is
not known yet.

• Short abstract like implemented now is preferred

192



CHAPTER 18. MINUTES AND MEETINGS

Tasks

• Improve Cubic Spline description

– Add axis splitting

– Add examples

• Do not mention hardware related details in Technical Report

26.05.09, Construction 3 - 1

Attendees

StJu, GiAc, HaHu

Location

HSR, 6.010

Decisions

• Next meeting will be held on 4th of June, 11:00 at HSR to review the Technical Report

Tasks

• Send in Technical Report until 1st of June

• Send in Abstract until 27th of May

• Restructure Technical Report

– Extend introduction

– Rate algorithms

– Add system overview, components

12.05.09, Construction 2 - 1

Attendees

StJu, GiAc, JoLe

Location

Tecan, Männedorf

Decisions

• Smooth Algorithm must be exchangeable

• Next meeting will be held on the 26th Mai, 13:30 at Tecan

• In the last week development will take place at Tecan. On Friday the 5th June the
infrastructure will be set up

193



CHAPTER 18. MINUTES AND MEETINGS

Tasks

• Compare Spline to Sinus-Smoothing: Acceleration per axis (Mathematica)

• Describe how the speed is calculated during a move

• Use fastest route, not shortest one

• Use the same scene for compare sinus to splines

• Handle maximum speeds

08.05.09, Construction 1 - 2

Attendees

StJu, GiAc, HaHu

Location

HSR, 6.010

Decisions

• State of the project management documents is okay

• Add Personal Report (can be written in German or in English) and Wiki Pages to
Project management docs

• Add Timereport to project management documents

• Next meeting will be held on the 26th Mai, 10:15 at HSR

28.04.09, Construction 1 - 1

Attendees

StJu, GiAc, JoLe

Location

Tecan, Männedorf

Decisions

• Project management docs should be sent in until Friday

• Gather more information about round moves using Cubic Spline Interpolation or Si-
nus/Cosinus curves on selected edges -¿ Create a feasibility document with the results
of the research

• Next meeting will be held on the 12th Mai, 13:30 at Tecan

194



CHAPTER 18. MINUTES AND MEETINGS

23.04.09, Elaboration 4

Attendees

StJu, GiAc, HaHu

Location

HSR , 6.010

Decisions

• Docs should be sent in in the next iteration for a review

• Next meeting will be held on the 7th Mai, 16:30 at HSR

20.04.09, Meeting Regarding Mathematical Question

Attendees

GiAc, Louis-Sepp Willimann

Location

HSR

Decisions

• Investigate in the usage of Splines (Cubic Splines)

08.04.09, Elaboration 3 - 1

Attendees

StJu, GiAc, JoLe, HaHu

Location

HSR, 6.010

Decisions

• The split in TestReport and TestCases is ok

• Bounding boxes are sufficient for collision calculation

• Low computation time is more important than low memory usage

Tasks

• Evaluate possibilities of late movement updates

• Update waypoint generation and viewer so the mechanism can be demonstrated

195



CHAPTER 18. MINUTES AND MEETINGS

19.03.09, Elaboration 2 - 2

Attendees

StJu, GiAc, JoLe

Location

Tecan, Männedorf

Decisions

• Don’t list snapshots on a per-revision basis in wiki

• Bounding boxes are sufficient for collision calculation

• Low computation time is more important than low memory usage

Tasks

• Use brighter colors in composition device examples

• Use different font for code sections

• Create diagram showing which algorithm is used where

19.03.09, Elaboration 2 - 1

Attendees

StJu, GiAc, HaHu

Location

HSR, 6.010

Decisions

• The Software Architecture Document does not have to be placed in its own document
for now

Tasks

• Create a conceptual model about the interaction of the 3D move engine with the target
system

• Create a document model

• Add new work packages for the two tasks defined above

• Name terminals in grammar

• Organize meeting with JoLe before Eastern

196



CHAPTER 18. MINUTES AND MEETINGS

05.03.09, Elaboration 1 - 1

Attendees

HaHu, GiAc, StJu

Location

HSR, 6.010

Decisions

• Next meeting will be held at HSR, 6.010 on the 19th of March, 16:00

Tasks

• Add ”Deliverables” subsection to ”Work Packages” in Software Development Plan

• Add ”Work Packages” for every iteration and fill them as much as possible

• Update Risk Management Document: Describe fallbacks for risks and not just actions
to eliminate them

04.03.09, Inception 1 - 1

Attendees

JoLe, StJu

Location

Tecan, Männedorf

Decisions

• Upload snapshots of management documents after every iteration

19.02.09, Kick Off

Attendees

StJu, GiAa, HaHu, JoLe, RaKe

Location

Tecan, Männedorf

Decisions

Tasks

• Define project schedule, milestones and deliverables until next meeting (StJu,GiAc)

• Set up svn accounts for JoLe and HaHu (StJu)

197



CHAPTER 18. MINUTES AND MEETINGS

198



Part V

Personal Reports

199





Giuseppe Accaputo

Seventeen weeks have passed since the be-
ginning of this adventure, and now I am
writing my personal report, describing how
the project went and the vast amount of new
things I have learned so far.

First of all, I have to say that it was an
amazing time and experience to work on the
Bachelor Thesis, consisting of such an inter-
esting mix of topics (software engineering,
computer science, math and more)x. I also
liked the fact that the Bachelor Thesis re-
quired quite a lot of research and evalua-
tion, during which I have learned a lot of
new things. But more about this later.

Project Management We used the RUP
to manage our project and software devel-
opment, splitting the available time into ap-
propriate iterations and lifecycle phases and
tailoring everything to our needs. We knew
ab initio that we would use RUP, since we
knew we could benefit a lot from its iter-
ative approach. Also, we decided to work
with RUP because we used it successfully
in two preceding projects (Software Engi-
neering 2 project and the Seminar Paper),
knowing exactly how we were going to use
it in regard to our Bachelor Thesis.

Since the beginning of the project we
knew about the necessity to invest a lot of
time in research, resulting in an extended
Elaboration phase. It turned out it was
a good move we had made, since we had
used the planned time successfully to eval-
uate various algorithms and to choose the
most suitable ones. Then, during the Con-
struction phase we could save a lot of time in
the implementation of the algorithms thanks
to a detailed evaluation. As adapted al-
ready during the Seminar Paper, we decided
to write Iteration Assessments during the
Bachelor Thesis, too. The Iteration Assess-
ments helped a lot, since after each iteration
we had a detailed overview of all the com-
pleted tasks of the actual iteration and the
planned tasks for the next iteration. Writing
Iteration Assessments has been proven once

again to be very useful and it is definetly
something I will use in future projects.

Learning Benefits As already mentioned
in the first paragraphs of the Personal Re-
port, I have learned a lot of new things dur-
ing the Bachelor Thesis. I have to say that
the most things I have learned were during
the research part, since it required reading
through research papers and other material,
and required a lot of thinking. I have to ad-
mit that I really enjoyed the research part
of the Bachelor Thesis, probably because I
liked the fact that I were going to learn a lot
of new things.

Thanks First of all, I would like to thank
Prof. Dr. Hansjörg Huser, Joas Leeman and
Rainer Kerkmann for the kind help, the ded-
icated time for meetings, reviews and more,
and for the availability.

I also want to thank Tecan Schweiz AG
for the provided workspace in the office, which
was very useful and I somehow regret that
we did not ask for a workspace in an earlier
stage of the project.

I would also like to thank my team mate
Stephan for his amazing team work and com-
mitment. Since we have both worked to-
gether on the Seminar Paper in the last semester,
working together on the Bachelor Thesis was
the logical corollary - and it worked very
well.

In conclusion I want to say that it was
a very interesting, exciting and - above all -
an instructive period of time, the Bachelor
Thesis. I can say that of all the lectures I
visited and all the practices I made during
my study at the HSR, the Bachelor Thesis is
the one I most benefitted from. So, thanks
for this great opportunity

201



Stephan Jud

Soon the Bachelor Thesis will be finished.
After one semester of intensive work, a lot
has been achieved. The final days were quite
busy during which my team mate and I have
been reviewing documents and source code.

In retrospect this was the first demand-
ing project in school for me – Also after
a few weeks it was still not evident how
we could achieve the goals. However, we
knew from the beginning that it will not be
easy but choosing a more theoretical project
turned out to be way more fun than the pre-
vious ones we had.

The mix of different topics like software
engineering, math, hardware issues and com-
puter science was a truly interesting experi-
ence. The limitations of the target environ-
ment discarded many of our approaches and
stayed a challenge during the whole project.
In the end however, it was one of the main
factors why it stayed an interesting project
throughout its whole duration. I really en-
joyed the thesis although we had to work
hard to get a basic prototype working. We
also learned to appreciate simple solutions
over complicated ones and tried hard to re-
duce the implementation to its essentials.
Keeping project management documents up
to date took a lot o time but helped us in
the end to better inform stakeholders before
meetings and to control the progress of the
project on our own.

Using LATEXenabled us to easily check
changes made by the other member which
led to an improved quality of the documen-
tation. It turned out to be a superior to
other tools especially as it allowed us to use
our own scripts and familiar tools. The Trac
environment has turned out to be an effec-
tive and appropriate management tool for
our project.

Studying related papers turned out to
be an exciting activity. In the end we could
not use many ideas or approaches. How-
ever, it gave us a great overview on related
topics which often did not affect us directly,
but was interesting to read about anyway.

Throughout the whole project we could de-
cide on our own in which way we would like
to move on. I would like to take this oppor-
tunity to thank for the trust we received.

Special thanks go to my team mate Giuseppe.
Without his contributions and patience the
project would not have been possible.

202



Part VI

Appendix

203





Appendix A

Images

A.1 Path Finding

A.1.1 Logical Map Traversal Example

This section shows how a logical map (section 2.2.1) is traversed. Just one evaluation branch
is shown though. Different branches can be evaluated iteratively as long as the costs used
up to a particular point are maintained correctly and used for proper synchronization. Once
it has been detected that several branches end up in the same node, the one with the least
costs used is tracked and the others are dropped.

Figure A.1: The current position and the desired target positions are known and placed as
nodes into the logical map. Logically they are placed next to each other because it unknown
yet how many nodes lie between them.

Figure A.2: After querying the underlying components a first set of graphs can be appended
to the start node.

205



A.1. PATH FINDING APPENDIX A. IMAGES

Figure A.3: The algorithm traverses through the graph carrying the costs with it. Note:
Depending on the costs which have been accumulated (which represents the time consumed
until a node) nodes are added and removed and costs of graph are updated.

Figure A.4: Collision Avoidance components are queried to get new graphs for the currently
active node. The accumulated costs are given to those components so they can generate a
snapshot of the environment according to a particular time.

Figure A.5: The map is traversed until the target node is found, a loop is detected or
no other paths are left to try out. Note: It is possible that a graph gets removed the
current node depended on once the traversal advances. This is not something bad and can
be ignored because the moving object already passed that graph and is not affected with
changes “behind” it.

206



APPENDIX A. IMAGES A.2. COLLISION AVOIDANCE

A.2 Collision Avoidance

oa

xa

Figure A.6: It is possible that the represented object is turning which results in a parabolic
axis allocation while the object travels within its axis range. This behavior can be repre-
sented with quadratic functions

oa

xa

Figure A.7: It is possible that one axis is bound to several objects which do move away or
towards each other when travelling within the axis’ range. To model this, every object has
to be associated with its own function

207



A.2. COLLISION AVOIDANCE APPENDIX A. IMAGES

oa

xa

xa

ta

Figure A.8: There may be cases where a collision would be detected when applying a function
graph. If both of the colliding objects are active their positions must be evaluated relative to
execution time as it might happen that they move out of their way just in the right moment.

208



APPENDIX A. IMAGES A.3. COLLISION RESOLUTION

A.3 Collision Resolution

Figure A.9: The main arm (blue) can move within x range. Its green subdevice can move
within y range. The red subdevice can move in z range. Obviously, all subdevices are
affected when the main arm moves which means that the collision avoidance mechanism
must consider all underlying subdevices when moving a device.

Figure A.10: The main arm (blue) can move within x range. Its green subdevice can magnify
the x movement. The two red subdevices can move in z axis. Solving a collision on the x
range can be solved in three ways: Move the main arm, move the green arm or move both
of them. Ideally, both arms are moved half of the required distance (assuming they have the
same acceleration factor), doubling the speed at which a device is able to evade a collision.

209



A.3. COLLISION RESOLUTION APPENDIX A. IMAGES

210



List of Figures

1 Multilevel proceeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Throughput measurements with five robots in the environment . . . . . . . . 17

2.1 Path Finding, Binary Cell Splitting . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Logical Map Waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Sweep Prune Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Sweep Prune Inverted Check . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Collision Resolution, Example of an axis function . . . . . . . . . . . . . . . . 32
2.6 Collision Resolution, Obstacle’s boundaries compared to an axis function . . 32
2.7 Collision Resolution, Obstacle’s boundaries applied to an axis function . . . . 32
2.8 Carrier Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 Interaction module range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Merged range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.11 Applied range after merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.12 Evading Axis Alternation Collision . . . . . . . . . . . . . . . . . . . . . . . . 34
2.13 Evading Axis Alternation Evading . . . . . . . . . . . . . . . . . . . . . . . . 35
2.14 Device Safety Clearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.15 Connected Waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.16 Smooth Edge (Sinus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.17 Natural Cubic Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.18 Example of a Cubic Spline Interpolation . . . . . . . . . . . . . . . . . . . . . 37
2.19 Acceleration move format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.20 Spline Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.21 Certain waypoints constellations may result in unexpected curves . . . . . . . 39
2.22 Acceleration with factor one . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.23 Smoothing Example, Input Route . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.24 Smoothing Example, Axes Split . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.25 Smoothing Example, Slow Down . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.26 Smoothing Example, Splining . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1 Deployment diagram representing the logical architecture . . . . . . . . . . . 43

3.2 Robotic Engine Sybsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Robotic Engine Data Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Flow diagram of a move request . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 The Request Parser class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 PathFinding Node Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 PathFinding Traverser Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Diagram Collision Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

211



LIST OF FIGURES LIST OF FIGURES

3.9 Diagram Move Dispatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.10 Diagram Unit Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.11 Unit Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.12 Diagram of the Move request class . . . . . . . . . . . . . . . . . . . . . . . . 49
3.13 Flow diagram of a move request concerning the Move Engine . . . . . . . . . 49
3.14 Diagram of the Device Container class . . . . . . . . . . . . . . . . . . . . . . 50
3.15 Diagram of the Move Result class . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.16 The Naturual Cubic Spline class . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.17 Performance, Comparison methods . . . . . . . . . . . . . . . . . . . . . . . . 52
3.18 Performance, Method vs Delegate . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.19 Performance, Natural Cubic Spline Algorithm, 100 Coordinates . . . . . . . . 54
3.20 Performance, Natural Cubic Spline Algorithm, 1000 Coordinates . . . . . . . 54
3.21 Performance, Natural Cubic Spline Algorithm, 10000 Coordinates . . . . . . . 54
3.22 Throughput measurements on a 2005 Intel Pentium D 2.8 GHz . . . . . . . . 55

4.1 Dijkstra example, Predefined search graph . . . . . . . . . . . . . . . . . . . . 58
4.2 A* Pointer types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 A* Manhattan method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 A* example, Predefined search area . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 A* example: Setting the parent node . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 A* example, Calculating G’s cost . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 A* example, Calculating H’s cost . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.8 A* example, Calculating node F’s score and adding the nodes to the open list 63
4.9 A* example, Inspection block of the node N1 . . . . . . . . . . . . . . . . . . 63
4.10 A* example, Updated search area after the second step . . . . . . . . . . . . . 63
4.11 A* example, Updated search area after the fifth step . . . . . . . . . . . . . . 64
4.12 A* example, Inspection block of node N4 . . . . . . . . . . . . . . . . . . . . 64
4.13 A* example, Inspection block of node N4 after update . . . . . . . . . . . . . 64
4.14 A* example, The inspection block of node N5 . . . . . . . . . . . . . . . . . . 64
4.15 A* example, The search is completed. . . . . . . . . . . . . . . . . . . . . . . 64
4.16 A* example, Determining the best path . . . . . . . . . . . . . . . . . . . . . 65
4.17 IDA* example, Predefined search area . . . . . . . . . . . . . . . . . . . . . . 66
4.18 IDA* example, Tree after the first iteration . . . . . . . . . . . . . . . . . . . 68
4.19 IDA* example, Tree after the second iteration . . . . . . . . . . . . . . . . . . 68
4.20 IDA* example, Tree after the third iteration with the goal node found . . . . 69
4.21 FS example, Predefined search area . . . . . . . . . . . . . . . . . . . . . . . . 69
4.22 FS example, Tree after the first iteration . . . . . . . . . . . . . . . . . . . . . 71
4.23 FS example, Tree after the second iteration . . . . . . . . . . . . . . . . . . . 72
4.24 FS example, Tree after the third iteration with the goal node found . . . . . . 72
4.25 Potential Field Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Auto completion Screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Move Request Controlling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1 Spline Tool, Sample Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1 Map Traversal Example Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.2 Map Traversal Example Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.3 Map Traversal Example Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 206
A.4 Map Traversal Example Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 206

212



LIST OF FIGURES LIST OF FIGURES

A.5 Map Traversal Example Step 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 206
A.6 Collision Resolution, Example of an axis with a round axis function graph . . 207
A.7 Collision Resolution, Example of an axis with multiple axis functions . . . . . 207
A.8 Collision Resolution, Collision Multiplexing . . . . . . . . . . . . . . . . . . . 208
A.9 Composed Device Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.10 Composed Device Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

213



LIST OF FIGURES LIST OF FIGURES

214



List of Algorithms

1 Enables Cubic Spline support for motion controllers . . . . . . . . . . . . . . 39
2 Collision detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

215



LIST OF ALGORITHMS LIST OF ALGORITHMS

216



Acronyms

A* A* search algorithm. 57, 63, 64, 66, 67

DSL Domain Specific Language. 43

FS Fringe Search. 65, 67

IDA* Iterative deepening A*. 22, 63–68

IDDFS Iterative deepening depth-first search. 63–65, 68

ME-IDA* Memory-enhanced IDA*. 63

RUP Rational Unified Process. 13, 14

217



Acronyms Acronyms

218



Glossary

Axis Allocation
Describes how much space a device occupies on an axis. 25

Collision Avoidance
Term which is used to describe the process of detecting and resolving collision between
devices and obstacles or other devices. 21

Collision Detection
The term Collision Detection is used to describe the process of determining when a
roboter collides with another roboter or obstacle. 25

Collision Resolution
The term Collision Resolution is used to describe the process of calculating an evasion
point in order to avoid a collision. 29

Dimensional Properties
Term used to describe the current dimensional situation of a roboter in x, y and z axis.
24

Monotonic
A property of a mathematical function which preserves its order. It may be either
increasing or decreasing.. 28

Robotic Arm
A roboter for the liquid handling platform. Depending on their purpose there are
different capabilities how the roboter can interact with its environment. 25

Sweep Prune
Name of an algorithm which allows efficient collision detection between objects. This
is achieved by reducing the number of checks by keeping a sorted list of obstacles. 25

Track
Robotic arms do not move within the environment by making use of wheels. Instead,
they are mounted on rails and can move within its range. 22

Waypoint
State and position of a roboter at a given moment. 23

219



Glossary Glossary

220



Bibliography

[1] A* Search Algorithm, [theory.stanford.edu]

[2] A* Pathfinding, [policyalmanac.org]

[3] Informed Search, [cs.umd.edu]

[4] Dijkstra’s Algorithm, [http://www.cse.ust.hk]

[5] Yngvi Bjoernsson, Markus Enzenberger, Robert C. Holte and Jonathan Schaeffer,
“Fringe Search: Beating A* at Pathfinding on Game Maps”, [ualberta.ca]

[6] Sweep and prune algorithm, http://en.wikipedia.org/wiki/Sweep_and_prune

[7] R.G. Lavender, D.C. Schmidt, “Active Object: An Object Behavioral Pattern for Con-
current Programming”, http://www.cs.wustl.edu/~schmidt/PDF/Act-Obj.pdf

[8] Design Patterns: Elements of Reusable Object-Oriented Software

221

http://theory.stanford.edu/~amitp/GameProgramming/
http://www.policyalmanac.org/games/aStarTutorial.htm
http://www.cs.umd.edu/~nau/cmsc421/chapter04a.pdf
http://www.cse.ust.hk/~dekai/271/notes/L10/L10.pdf
http://www.cs.ualberta.ca/~games/pathfind/publications/cig2005.pdf
http://en.wikipedia.org/wiki/Sweep_and_prune
http://www.cs.wustl.edu/~schmidt/PDF/Act-Obj.pdf

	I Management Summary
	II Technical Report
	Introduction
	Environment
	Goal
	Scope

	Collision Avoidance
	System Properties
	Path Finding
	3D Path Finding
	Conclusion

	Collision Detection
	Sweep Prune
	Parallel Pruning

	Collision Resolution
	Necessary Data
	Basic Procedure
	Function Resolution
	Device Collaboration
	Evading Axis Alternation
	Safety Clearance
	Route Smoothing


	Realization
	Design
	Engine Interface
	Move Engine Procedure
	Request Parser
	Path Finding
	Collision Detection
	Collision Resolution
	Move Dispatcher
	Function Representation
	Motion Controller
	Unit Handling
	Move Request
	Waypoint
	Device Container
	Move Result
	Natural Cubic Spline
	Extensions

	Implementation
	Axis Logic Redundancy
	Time Handling
	Active Evading
	Dynamic Dimension
	Performance
	Run Time
	Limitations
	Problems


	Algorithm Analysis
	Dijktra's Algorithm
	A* Search Algorithm
	Iterative Deepening A*
	Fringe Search
	Potential Field
	Conclusion

	Object Viewer Tool
	Introduction
	Functionality
	Navigation
	Move Commands
	Turn Commands
	Other Commands


	Move Tool
	Introduction
	Functionality
	Define a Query
	Auto completion
	Controlling Requests
	Object View


	Spline Tool
	Introduction
	Functionality
	Define The Coordinates
	Toggle On and Off Content

	Implementation
	Browser Compatibility
	Heuristic Evaluation
	Purpose
	Usability Heuristics


	Conclusion

	III Testing
	Test Plan
	Algorithm Tests
	Logical Map Traversal
	Collision Resolution
	Cubic Spline Interpolation

	Unit Conversion
	Metric Tests

	Spline Tool
	Browser Compatibility

	Parser Tests
	P-T01: Absolute Values
	P-T02: Positive Relative Values
	P-T03: Negative Relative Values


	Test Report 12.05.2009
	Test Report 27.05.2009
	Test Report 02.06.2009

	IV Project Management
	Software Development Plan
	Changes
	Abbreviations
	Organization
	External Interfaces
	Infrastructure
	Development Process
	Iteration Plan

	Work Packages
	Inception 1
	Elaboration 1
	Elaboration 2
	Elaboration 3
	Elaboration 4
	Construction 1
	Construction 2
	Construction 3
	Transition 1


	Iteration Assessments
	Inception 1
	Elaboration 1
	Elaboration 2
	Elaboration 3
	Elaboration 4
	Construction 1
	Construction 2
	Construction 3
	Transition 1

	Risk Management
	Changes
	Risks

	Requirements
	Aims and Objectives
	Requirements
	Functionality
	Reliability
	Usability
	Performance
	Supportability
	Design Constraints


	Quality Management
	Code Reviews
	Document Reviews
	Bug Tracking
	Testing
	Tools
	NUnit
	FXCop
	CSharp Compiler

	Coding Guidelines
	Guidelines for TeX

	Minutes and Meetings

	V Personal Reports
	VI Appendix
	Images
	Path Finding
	Logical Map Traversal Example

	Collision Avoidance
	Collision Resolution

	Acronyms
	Glossary
	Bibliography


