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1 Proof

1.1 Proof by contradiction

We want to prove P → Q. Assume that 6 Q and start the proof with P trying to proof
6 Q until you arrive at something that contradicts P .

2 Sets

2.1 Subsets

Subset
A ⊆ B :⇐⇒ ∀x ∈ A : x ∈ B

Not Subset
A * B :⇐⇒ x ∈ A ∧ x /∈ B

Empty Set The empty set is a subset of any given Set X:

∅ ⊆ X

Set Equality
A = B :⇐⇒ A ⊆ B ∧B ⊆ A

Complement
x /∈ A⇐⇒ x ∈ A

Union of all sets ⋃
A := {x|∃A ∈ A : x ∈ A}

Intersection of all sets ⋂
A := {x|∀A ∈ A : x ∈ A}

3 Relations

Definition Let ρ be a relation from a set A to a set B, then ρ ⊆ A×B

Notation

(a, b) ∈ ρ⇐⇒ a ρ b

Representations of relations A relation ρ from A to B denoted as A ρ B can be
represented as a |A| × |B| matrix Mρ.

Let A = B = {a, b, c} and ρ = {(a, a), (a, c), (b, b), (c, c)}. The matrix representation is

Mρ =


a b c

a 1 0 1
b 0 1 0
c 0 0 1


Composition of a relation ρ with itself

ρn = (Mρ)n = Mρ · ... ·Mρ︸ ︷︷ ︸
n-times

Note: If an entry in the matrix is 〉1, then the number is simply replaced by 1.

Reflexive closure of ρ on a set A

ρ ∪ {(a, a)|a ∈ A}

Symmetric closure of ρ on a set A

ρ ∪ {(a, b)|(b, a) ∈ ρ}
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Transitive closure of ρ on a set A

ρ∗ =

∞⋃
n=1

pn, ρ ⊆ ρ∗

3.1 Equivalence Relations

Definition An equivalence relation is a relation that is reflexive, symmetric, and tran-
sitive.

Equivalence class The equivalence class [a]θ of a ∈ A contains all elements that are
equivalent to a:

[a]θ := {b ∈ A|b θ a}

Partition of a set A

Si ⊆ A} is a partition of A

Si ∩ Sj = ∅ for i 6= j and
⋃
i∈I

Si = A

Quotient set of A by θ

A/θ := {[a]θ|a ∈ A}

(i) A/θ is a partition of A

(ii) A/θ is the set of equivalence classes of an equivalence relation θ on A

3.2 Partial Orders

Definition A partial order is a relation that is reflexive, antisymmetric, and transitive.
A set A together with a partial order � on A is called a partially ordered set (poset) and
is denoted as (A;�)

Totally ordered If any two elements of a poset (A,�) are comparable, then A is
called totally ordered by �

Well-ordered A poset (A,�) is well-ordered if it is totally ordered and if every non-
empty subset of A has a least element.

Types of Elements in a poset Let (A;�) be a poset, and S ⊆ A:

Minimal element of S : ∃a ∈ S ∀b ∈ S : b ⊀ a

Maximal element of S : ∃a ∈ S ∀b ∈ S : b � a

Least element of S : ∃a ∈ S ∀b ∈ S : a � b

Greatest element of S : ∃a ∈ S ∀b ∈ S : a � b

Lower bound of S : ∃a ∈ A ∀b ∈ S : a � b

Upper bound of S : ∃a ∈ A ∀b ∈ S : a � b

Greatest lower bound of S : a is the greatest element of the set of all lower bounds

Least upper bound of S : a is the least element of the set of all upper bounds

3.2.1 Hasse Diagrams

Covering An element b of a poset (A,≺) covers an element a if

a ≺ b ∧ (@ c : a ≺ c ∧ c ≺ b)

Example ({1, 2, 3, 4, 5, 6, 7, 8}, |) is a poset. 2|4, but 2 6 |8, because ∃c = 4 such that
2|4 ∧ 4|8.

Types of Elements in a Hasse diagram

Notation Since a Hasse diagram is constructed bottom-up, you can imagine it to be
a reversed tree. Therefore, an element at the very bottom of a Hasse diagram will be
called a root and elements that are not covered by any other elements are called leafs:

root
@
@@

c
leaf leaf

@
@@

@
@@

c
�
��

leaf

Least element : The root of the Hasse diagram.
If there are multiple roots, no least element exists in the poset

Greatest element : The leaf of the Hasse diagram.
If there are multiple leafs, no greatest element exists in the poset
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Minimal element: The root of the Hasse diagram.
If there are multiple roots, then all roots are minimal elements of the poset

Maximal element : The leaf of the Hasse diagram.
If there are multiple leafs, then all leafs are maximal elements of the poset

Example The following is the Hasse diagram of the poset (1, 2, 3, 5, 6, 9; |).

1
@

@@
2

6 9

@
@@

@
@@

3

�
��

5

Least element : 1 (the root)

Greatest element : None (multiple leafs)

Minimal element: 1 (the root)

Greatest elements : 6,9,5 (the leafs)

3.2.2 Partial Order Relations

Partial Order Relation Let (A,�) and (B,v). The following relation ≤ defined on
A×B is a partial order relation:

(a1, b1) ≤ (a2, b2) :⇐⇒ a1 � a2 ∧ b1 v b2

Lexicographical Order Relation Let (A,�) and (B,v). The following relation ≤lex
defined on A×B is a partial order relation:

(a1, b1) ≤lex (a2, b2) :⇐⇒ a1 ≺ a2 ∨ (a1 = a2 ∧ b1 v b2)

4 Functions

Image

f : A→ B f(A) ⊆ B f(A) is the image of f

Surjective

f(A) = B =⇒ |f(A)| = |B|

Injective
|A| = |f(A)|

5 Combinatorics

5.1 Beschreibung

• Was ich nicht auswählen muss wird dividiert

• Was ich auswählen muss wird multipliziert

Beispiel Hamiltonkreise in vollständigem Graph: n! Möglichkeiten, um Knoten zu durch-
laufen. Ich muss kein Startknoten wählen =⇒ n!

n . Richtung spielt keine Rolle =⇒ n!
2n

5.2 Flowchart

1. Sind die Objekte, auf welche ich verteile oder welche ich nehme eindeutig gekennze-
ichnet? (z.B. Hosen sortiert nach, oder ich stelle Personen hinter verschiedenen
Kassen )

• JA: Ordered

• NEIN: Unordered (z.B. gleichaussehnde Urnen)

5.3 Ordered Selection with Repetition

The number of ordered selections of length s with repetition out of n different objects is

ns

Generic example There are nk different words of length k in an alphabet consisting
of n characters. A character can occur multiple times in a word (repetition).

5.4 Ordered Selection without Repetition

The number of ordered selections of length s without repetition out of n different objects
is

nk =
n!

(n− s)!

Example Mister Poss chooses 2 pairs of trousers sorted by their rating
If the number of ordered selections is the same as the number of different objects (namely
n), then we simply have

n!

One can arrange n different items in n! different ordered ways.
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Example Mister Random wants to arrange his 3 kids for a photograph. For the first
kid, he has 3 possibilities to arrange it. For the second kid, only 2 possibilities remain for
the positioning. For the last kid, Mister X does not have a choice, since only 1 possibility
remains. Therefore, we obtain 3 · 2 · 1 = 3! possibilities for the positioning of the 3 kids.

5.5 Unordered Selection with Repetition

The number of possibilities to store k elements away in n drawers is(
k + n− 1

k

)
=

(
k + n− 1

n− 1

)
Figurative

◦ ◦ ◦︸ ︷︷ ︸
1st drawer

∣∣ ◦︸︷︷︸
2nd drawer

∣∣...∣∣ ◦ ◦︸︷︷︸
nth drawer︸ ︷︷ ︸

n− 1 separation lines

Example If we want to store 20 pairs of socks away in 3 drawers, than we have
(
20+3−1

3

)
possibilities to do so.

5.6 Unordered Selection without Repetition

The number of unordered selections of different subsets of length k from a set of length
n is (

n

k

)

Example There are
(
49
6

)
possibilities to choose 6 numbers from 49 on a lottery ticket.

6 Countable and Uncountable Sets

Equivalent Sets
A =⇒ B is a bijection =⇒ A v B

(i) v is an equivalence relation

Countable Set

A � N ⇐⇒ ∃ A =⇒ N , which is an injective mapping

(i) A � B means B is at least equipotent to A

(ii) � is transitive: A � B ∧B � C =⇒ A � C

(iii) A � B ∧B � A =⇒ A v B

Uncountable Set
A � N ∧A � B =⇒ B � N

(i) If A ⊆ B and B is uncountable, then so is A
Example: (0, 1) ⊆ R =⇒ (0, 1) is uncountable

7 Graphs

Isomorphism To check if two graphs G = (VG, EG) and K = (VK , EK) are isomorphic
(G ∼= K), verify the following properties in this order:

1. Check |VG| = |VK |. With |VG| 6= |VK | you cannot define a bijection for the renam-
ing of the vertices, resulting in G � K

2. Check that both graphs have the same amount of vertices with the same degree.
∃w ∈ VG: deg(w) = x ∧ ∀l ∈ VK : deg(l) 6= x =⇒ G � K

3. Check for cycles of length n. Let Cn be such a cycle of length n. If Cn v G∧Cn 6v
K =⇒ G � K

4. Now you can try to define a bijection π : VG =⇒ VK . If such a bijection exists,
then G ∼= K

8 Divisors and Division

8.1 Fracture
a
b is the number that multiplied by b results in a:

b · a
b

= a

a|ab means that a number k exists, such that a
b = k · a. In this case it is important to

note that a
b is just a symbol, meaning we cannot multiply both sides with b to remove

the rational term from the equation.

Instead, one can show using the above mentioned definition that if a | b ∧ c | ba applies,
then c | b can be concluded as follows:

c | b
a

=⇒ ∃ d :
b

a
= c · d =⇒ b = a · b

a
= acd = (ad)c =⇒ c | b

Although it’s mentioned that b
a is only a symbol, one can still make the following trans-

formation:

b = acd⇐⇒ b

c
= ad
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8.2 Division Algorithm

For all integers a and b 6= 0 there exist unique integers q and r satisfying

a = q · b+ r and r ∈ {0, ..., b− 1}

q is called the quotient, and is the biggest possible multiple of b so that q · b is at most a.

r is called the remainder, and is often denoted as Rb(a) or a mod b.

Example 1 a = 7, b = 3, q = 2 (since 3 · 3〉7 but 2 · 3 ≤ 7) , r = R3(7) = 1

Example 2

12x+ 7y = 321

=⇒ 12x = 321− 7y

=⇒ 12x = (−1) · y · 7 + 321

=⇒ a = 12x, b = 7, q = (−1) · y, r = 321 = R7(12x)

=⇒ 12x ≡7 321

=⇒ R7(12x) = R7(321)

=⇒ R7(R7(12) ·R7(x)) = R7(315 + 6)

=⇒ R7(R7(12) ·R7(x)) = R7(R7(315) +R7(6))

=⇒ R7(5x) = R7(6)

=⇒ 5x ≡7 6

=⇒ x = 4

=⇒ As long as y〉0 : y = 321− 12 · (4 + k · 7) with k ∈ N\{0}

8.3 Modular Arithmetic

8.3.1 Coset

a ≡m b ⇐⇒ Rm(a) = Rm(b)

8.3.2 Relatively Prime Numbers

Two numbers a and m are said to be relatively prime if the following equation holds:

a ≡m 1

8.3.3 Modular Congruence

a+ k ·m ≡m b+ k ·m for k ∈ Z

Examples

10 ≡11 10 =⇒ 10 ≡11 −1

8 ≡10 8 =⇒ 8 ≡10 −2

8 ≡20 8 =⇒ 8 ≡20 −12

− 25 ≡3 −1 =⇒ 2 ≡3 −1

8.3.4 Euclide: Unique Integerss

a = dq + r ⇐⇒ a = dq +Rd(a)

8.3.5 Simplifying the Search for an Inverse When Calculating Rm(ab)

ab ≡m m− 1 =⇒ ab ≡m −1 =⇒ a2·b ≡m 1

Example: 25 ≡11 −1 =⇒ 210 ≡11 1

8.4 Extended Euclidean Algorithm

The extended Euclidean algorithm (EEA) can be used to calculate gcd(m,n) and find
the multiplicative inverse for two integers when gcd(m,n) = 1 holds. It also offers a
possibility to find two integers x and y that satisfy Bézout’s identity:

gcd(m,n) = mx+ ny

8.4.1 Calculate gcd(m,n)

Let m and n be two integers and m〉n. To calculate the gcd(m,n) of both integers one
can follow the following steps of the EEA:

Dividend = Quotient · Divisor + Reminder
m = q1 · n + r1
n = q2 · r1 + r2
r1 = q3 · r2 + r3

...
rn−2 = qn · rn−1 + rn
rn−1 = qn+1 · rn + 0

The calculation comes to an end once the reminder is 0. Once the algorithm has reached
this step, the solution of gcd(m,n) can be read off from the second to last equation:

gcd(m,n) = rn
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Example Calculate gcd(17, 7):

17 = 2 · 7 + 3

7 = 2 · 3 + 1

3 = 3 · 1 + 0

=⇒ gcd(17, 7) = 1

8.4.2 Solving Bézout’s Identity gcd(m,n) = mx+ ny

First calculate gcd(m,n) using the previously explained steps:

Dividend = Quotient · Divisor + Reminder
m = q1 · n + r1
n = q2 · r1 + r2
r1 = q3 · r2 + r3

...
rn−2 = qn · rn−1 + rn
rn−1 = qn+1 · rn + 0

Once the step right before the reminder equals 0 has been reached, the equation at this
very step is rewritten such that all terms without rn are moved to the left side:

rn−2 − qn · rn−1 = rn

The previous equation to this one then will be altered in the same way, leaving the
reminder rn−1 on the right side of the equal sign:

rn−3 − qn−1 · rn−2 = rn−1

Now that rn−1 has been defined, its definition can be used in the very first equation
(which will be called the final equation from now on):

rn−2 − qn · rn−1 = rn =⇒ rn−2 − qn · (rn−3 − qn−1 · rn−2)

This steps have to be repeated for every equation that has been a result of the calculation
of gcd(m,n).

It is important to note that during these steps only the replacements should be made,
and no terms should be changed, e.g. leave 4 · (2− 1).

Once the very first equation has been processed and used in the final equation, one will
find both the numbers m and n to be part of it, since the first two equations when
calculating gcd(m,n) are m = ... and n = ....

One now can start expanding the various multiplications that have resulted from the var-
ious replacements. Please note that any arithmetic operation involving m or n should
be performed as follows, i.e. m and n should be treated like variables:

m = 3 =⇒ 3 · (1−m) = 3 · (1− 3) = 3− 3 · 3 = −2 · 3

From the final form of the equation one can read off the wanted x and y values:

mx+ ny = gcd(m,n)

Example Calculate gcd(17, 7) = 17x+ 7y:

17 = 2 · 7 + 3

7 = 2 · 3 + 1

3 = 3 · 1 + 0

=⇒ gcd(17, 7) = 1

7− 2 · 3 = 1

7− 2 · (17− 2 · 7) = 1

7− 2 · 17 + 4 · 7 = 1

5 · 7− 2 · 17 = 1

=⇒ x = −2, y = 5

Example Calculate gcd(71, 12) = 71x+ 12y:

71 = 5 · 12 + 11

12 = 1 · 11 + 1

=⇒ gcd(71, 12) = 1

12− 11 = 1

12− (71− 5 · 12) = 1

6 · 12− 1 · 71 = 1

=⇒ x = −1, y = 6

8.4.3 Calculate the Modular Multiplicative Inverse

Let m and n be two integers, such that m〉n. Using the EEA, it is possible to calculate
the modular multiplicative inverses of m mod n and n mod m respectively:

1. Assure that gcd(m,n) = 1 by using the method described in 8.4.1.

2. Find x and y in Bézout’s identity by using the method described in 8.4.2:

gcd(m,n) = m · x+ n · y
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Getting the Modular Multiplicative Inverses Once the x and y in Bézout’s iden-
tity have been defined, the modular multiplicative inverses can be read off as follows:

1. The modular multiplicative inverse of n mod m is simply Rm(y):

Rm(m · x+ n · y) = Rm(1)

=⇒ Rm(n · y) = Rm(1)

=⇒ n · y ≡m 1

=⇒ y is the modular multiplicative inverse of n mod m

=⇒ n is the modular multiplicative inverse of y mod m (Commutativity)

2. The modular multiplicative inverse of m mod n is simply Rn(x):

Rn(m · x+ n · y) = Rn(1)

=⇒ Rn(m · x) = Rn(1)

=⇒ m · x ≡n 1

=⇒ x is the modular multiplicative inverse of m mod n

=⇒ m is the modular multiplicative inverse of x mod n (Commutativity)

Example Find the modular multiplicative inverse of 123 mod 43, such that 123 ·x ≡43

1 holds:

123 = 2 · 43 + 37

43 = 1 · 37 + 6

37 = 6 · 6 + 1

=⇒ gcd(123, 43) = 1

37− 6 · 6 = 1

37− 6 · (43− 37) = 1

(123− 2 · 43)− 6 · (43− (123− 2 · 43)) = 1

7 · 123− 20 · 43 = 1

=⇒ x = 7, y = −20

The modular multiplicative inverse of 123 mod 43 is x = 7.

This can be checked pretty easily:

123 · 7 ≡43 1

=⇒ R43(123) ·R43(7) = R43(1)

=⇒ R43(−6) ·R43(7) = R43(1)

=⇒ R43(−42) = R43(1)

=⇒ R43(1) = R43(1)

=⇒ 1 ≡43 1

The modular multiplicative inverse of 43 mod 123 is y = −20 respectively.

8.5 Chinese Remainder Theorem

Let m1,m2, ...,mr be pairwise relatively prime integers.

Let M =
∏r
i=1mi.

For every list a1, a2, ..., ar with 0 ≤ ai < mi for 1 ≤ i ≤ r, the system of congruence
equations

x ≡m1
a1

x ≡m2
a1

...

x ≡mr
ar

for x has a unique solution x satisfying 0 ≤ x < M .

8.5.1 Steps for Solving the Congruence Equations Using the Chinese Re-
mainder Theorem

1. Let there be a list of congruence equations of the following form:

x ≡mi
ai for 1 ≤ i ≤ r

2. If not already defined, calculate M :

M =

r∏
i=1

mi

3. Let Mi = M/mi. This implies gcd(Mi,mi) = 1 and will be used to calculate Ni.

4. Solve MiNi ≡mi 1 (read the tips below or use the Extended Euclidean Algorithm)

5. Calculate x:

RM
( r∑
i=1

aiMiNi
)

6. If asked that a solution for x must be within a given interval, just subtract a mul-
tiple of M from x such that the resulting number lies within the defined interval.

7. If no interval is given, then there are infinite solutions in the form of x+k ·M with
k ∈ Z

7 · Giuseppe Accaputo · www.accaputo.ch

www.accaputo.ch


Tips

• In most cases you will not need to use the Extended Euclidean Algorithm to cal-
culate Ni. If Mi ·Ni ≡ mi1 is given, one can try to add / subtract multiples of mi

from Mi and 1 to simplify the calculation of Ni.

Examples

63 ·N1 ≡5 1

3 ·N1 ≡5 1

3 ·N1 ≡5 6

N1 = 2

88 ·N2 ≡9 1

7 ·N2 ≡9 1

7 ·N2 ≡9 10

− 2 ·N2 ≡9 10

N2 = −5 =⇒ N2 = 4

• If an mi is a rather big integer, and in result the corresponding Ni might therefore
be big, too, one can simply subtract multiples of mi from Ni. This will simplify
the multiplication later when calculating x.

Example

M1 = 35,m1 = 9, a1 = 1

35 ·N1 ≡9 1

N1 = 8 =⇒ N1 = −1

x = ...− 1 · 1 · 35...+ ...

• If the ais of the given congruence equations x ≡mi
ai are rather big integers, first

simplify them either by subtracting multiples of mi from ai, or if ai is a rather big
power, just use the following rule:

aki ≡mi
1 =⇒ Rmi

(ak) = 1

Example

x ≡5 2119

22 ≡5 −1 =⇒ 24 ≡5 1

R5(2117) = R5(24·29+3) = R5(R5(24·29) ·R5(23))

= R5(R5(24) · ... ·R5(24)︸ ︷︷ ︸
29 times

·R5(23))

= R5(1 ·R5(23)) = R5(8) = 3

x ≡5 2119 =⇒ x ≡5 3

Example Let M = 60 = 4 · 5 · 3. Find an x in 0 ≤ x ≤ 60 such that the following
congruence equations hold:

x ≡4 1

x ≡3 2

x ≡5 3

1. Check that the m1,m2 and m3 are pairwise relatively prime:

gcd(4, 3) = 1

gcd(4, 5) = 1

gcd(3, 5) = 1

2. Calculate M1,M2 and M3:

M1 = M/m1 = 60/4 = 15

M2 = M/m2 = 60/3 = 20

M3 = M/m3 = 60/5 = 12

3. Solve the following congruence equations separately:

15 ·N1 ≡4 1

20 ·N2 ≡3 1

12 ·N3 ≡5 1
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(i)

15 ·N1 ≡4 1

3 ·N1 ≡4 1 (Subtract 3 · 4 from 15)

3 ·N1 ≡4 9 (Add 2 · 4 to 1)

N1 = 3

Using the EEA to calculate the multiplicative inverse:

15 = 3 · 4 + 3

4 = 1 · 3 + 1

=⇒ gcd(15, 4) = 1

Actually, this follows directly from the fact that Mi = M/mi =⇒
gcd(Mi,mi) = 1. Nonetheless, this step is needed for the further steps in
the calculation of the multiplicative inverse.

(ii)

20 ·N2 ≡3 1

2 ·N2 ≡3 1 (Subtract 6 · 3 from 20)

2 ·N2 ≡3 4 (Add 3 to 1)

N2 = 2

(iii)

12 ·N3 ≡5 1

2 ·N3 ≡5 1 (Subtract 2 · 5 from 12)

2 ·N3 ≡5 6 (Add 5 to 1)

N3 = 3

4. Calculate x:

R4·3·5(15 · 3 · 1 + 20 · 2 · 2 + 12 · 3 · 3)

= R60(233)

= 53

=⇒ x = 53

9 Algebra

9.1 An Overview

9.1.1 Algebra

An algebra or algebraic structure is a pair 〈S; Ω〉 where S is a set (the carrier of the
algebra) and Ω = (ω1, ..., ωn) is a list of operations on S. The set S is closed under all

the operations in Ω.

9.1.2 Semigroup

A semigroup is an algebra 〈S; ∗〉 that satisfies the following axiom:

(i) Associativity ∀a, b, c ∈ S : (a · b) · c = a · (b · c)

9.1.3 Monoid

A monoid is an algebra 〈S; ∗, e〉 that satisfies the following axioms:

(i) Associativity ∀a, b, c ∈ S : (a · b) · c = a · (b · c)

(ii) Closure ∀a, b ∈ S : a · b ∈ S

(iii) Identity element ∃e ∈ S : ∀a ∈ S : e · a = a · e = a

It’s important to note that a monoid may or may not contain inverse elements for some
a ∈ S; a monoid does not have to satisfy this property.

9.1.4 Group

A group is an algebra 〈S; ∗, e,−1 〉 that satisfies the following axioms (called the group
axioms):

(i) Associativity ∀a, b, c ∈ S : (a · b) · c = a · (b · c)

(ii) Closure ∀a, b ∈ S : a · b ∈ S

(iii) Identity element ∃e ∈ S ∀a ∈ S : e · a = a · e = a

(iv) Inverse element ∀a ∈ S ∃b ∈ S : a · b = b · a = e

9.1.5 Subgroup

A subset H of a group 〈S; ∗, e,−1 〉 is called subgroup of G if 〈H; ∗, e,−1 〉 satisfies the
group axioms (9.1.4).

9.1.6 Abelian

A group, monoid or semigroup 〈S; ∗〉 is called commutative or abelian if it satisfies the
commutative property:

(i) Commutative property ∀a, b ∈ S : a · b = b · a

Good to know A group 〈G; ·〉 with |G| = 1 is always abelian.

9 · Giuseppe Accaputo · www.accaputo.ch

www.accaputo.ch


9.1.7 Ring

A ring 〈R; +,−, 0, ·, 1〉 is an algebra with the following properties:

(i) 〈R; +,−, 0〉 is an abelian group

(ii) 〈R; ·, 1〉 is a monoid

(iii) Distributive properties

• a · (b+ c) = a · b+ a · c (left distributive property)

• (b+ c) · a = b · a+ c · a (right distributive property)

A ring is called commutative if multiplication satisfies the commutative property:

(i) Commutative property ∀a, b ∈ R : a · b = b · a

9.1.8 Integral Domain

An integral domain is a nontrivial commutative ring 〈R; +,−, 0, ·, 1〉 without zero divi-
sors:

(i) ∀a, b ∈ R : a · b = 0 =⇒ a = 0 ∨ b = 0

9.2 Field

A field is a nontrivial commutative ring 〈F ; +,−, 0, ·, 1〉 in which every nonzero element
is a unit, i.e. U(F ) = F\{0}. Verbally, this means that every element except 0 has an
(additive and multiplicative) inverse element in F .

A ring F is a field if and only if 〈F\{0}; ·,−1 , 1〉 is an abelian group.

A field is also an integral domain. For two polynomials a and b, both with degree m,
the multiplication of amxm 6= 0 and bmxm 6= 0 always yields a polynomial c of degree
m+m: cm+mxm+m.

9.3 Groups

9.3.1 Finite Groups

Let G be a finite group:

(i) |G| is called the order of G

(ii) Every element of the group G has finite order

(iii) 〈a〉 is the smallest subgroup of G: 〈a〉 = {e, a, a2, ..., aord(a)−1

(iv) If H ≤ G is a subgroup of G, then the order of H divides the order of G: |H| | |G|

(v) The order of every element of G divides the order of G: ∀a ∈ G : ord(a) | |G|

(vi) ∀a ∈ G : a|G| = e

(vii) The inverse element of gi is g|G|−i

Commutativity

(i) If |G| = 1, then G is commutative

(ii) If G is not commutative, then |G|〉1

9.3.2 Cyclic Groups

Let Zn be a cyclic group with n elements:

(i) If a ∈ Zn is prime, then ord(a) = |Zn| = n

Inverse elements Let G be an infinite group. The inverse element of gi is g−i

Example of an infinite group 〈Z,+〉

9.4 Rings

9.4.1 The Ring of Polynomials R[x]

The ring R[x] is the ring of polynomials with coefficients from a ring R

9.4.2 The Ring of Polynomials K[x]

The ring K[x] is the ring of polynomials with coefficients from a field K.

On why K[x] is not a field Finding a multiplicative inverse of any polynomial in
the field K[x] is impossible.

Proof. Lets assume K[x] is a field. Since the zero polynom is not part of the multiplica-
tive group 〈K\{0}; ·,−1 , 1〉 of the field K[x], the multiplication of two polynomials with
a respective degree m and n yields a new polynomial with the degree m + n. Because
of this fact, one cannot find an inverse polynom k−1 such that the multiplication with
the respective polynom k results in the neutral element, namely the constant polynom
1 with degree 0. Therefore, K[x] cannot be a field.

9.5 Fields

9.5.1 Galois Field

A field with q elements is denoted as GF (q).
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9.5.2 Working With Multiplicative Inverses In A Field GF (q)

Let a, b ∈ GF (q) with a < b. Let the equation a · b−1 be part of this.

1. If it is the case to calculate , then first assure that gcd(a, b) 6= 1∧ gcd(a, b) = b and
then simply divide a with b.

Example

2, 4 ∈ GF (7)

2 · x = 4

x = 4 · 2−1 = 4/2 = 2

2. If gcd(a, b) = 1, just solve b · x ≡q 1 for x. x will be the multiplicative inverse b−1.

Note: This is just a mnemonic, since it is known that the division operation is not part
of a field’s set of operations, and also only holds when gcd(a, b) = b.

10 Logik

• Korrekte Kalküle: Wahrheitstabelle aufstellen. Wenn Modell für Vorbedingung,
dann muss es auch ein Modell für die Konklusion sein.

• Erfüllbar: Ein Modell existiert, also eine Belegung, die die Formel erfüllt.

• Gültig: Tautologie

• Syntax: F Formel, G Formel, dann ist F ⊕G eine Formel
Semantik:

A(F ⊕G) =

{
1, falls A(F ) = 1 ∧ A(G) = 0

0, sonst

• Man unterscheidet zwischen Terme und Formeln

– Terme: Funktionen (Funktionssymbole), freie Variablen

– Formeln: Prädikate inkl. ∀,∃. Formeln der Art F ∧G,F ∨G,¬G

• Die Identität (=) kann nur auf Terme angewendet werden!

• F |= G⇐⇒ G ist eine Folgerung von F , d.h. alle Modelle von F sind auch Modelle
von G

• Passend : Eine Struktur I heisst passend, wenn diese alle Prädikate, freien Vari-
ablen, Funktionen und zusätzlich das Universum für eine Formel definiert

• Pränexform: F = Q1y1Q2y2 . . . QkykF̂ . In F̂ darf kein Quantor vorkommen.
Vorgehen: Substitution, falls freie Variable gleich benannt ist wie Quantorvari-
able.

• Skolemform: Ersetze alle Existenzquantoren mit Funktionssymbole, also F =
∀y1∀y2...∀yn∃xG =⇒ F := ∀y1∀y2...∀ynG [x/f (y1, ..., yn)]

11 Tipps zur Prüfung

11.1 Logik

11.1.1 Universum nicht vergessen

Wird verlangt, Aussagen formal durch Prädikate zu schreiben, so sollte man nie
vergessen, das Universum U zu definieren. Beispiel: U = R

11.2 Relationen

11.2.1 Matrixdarstellung

Sei Mρ die Matrixdarstellung der Relation ρ und ρ̂ die Inverse eben dieser Relation;
dann gilt

Mρ̂ = MT
ρ

Für den Eintrag mij der Matrix Mρ gilt:

mij = 1⇐⇒ i ρ j

11.3 Algebra

11.3.1 Schnelle Möglichkeit um Untergruppen festzustellen

Beispiel: Finde alle Untergruppen von 〈Z18,⊕〉.

1. Alle teilerfremden Zahlen zu 18 bilden Untergruppen der gleichen Ordnung:
〈1〉 = 〈5〉 = 〈7〉 = 〈11〉 = 〈13〉 = 〈17〉 = Z18

2. Teilt Zahl x die Zahl 18, so bildet 〈x〉 eine Untergruppe von Z18 mit 18
x Elementen

3. Für die restlichen Zahlen gilt: Sei d = gcd(y, 18) =⇒ ord(y) = 18
d =⇒ 〈y〉 ist

Untergruppe mit 18
d Elementen.

Beispiel: gcd(15, 18) = 3 =⇒ ord(15) = 6(6 · 15 = 90 =⇒ 90mod18 = 0X) =⇒
〈15〉 ist Untergruppe mit 6 Elementen

11.4 Zahlentheorie, modulare Arithmetik

11.4.1 Anzahl Nullteiler in einem Ring

Sei 〈Zm,⊕,�〉 gegeben. Die Anzahl Nullteiler ist nun m− ϕ(m)− 1.
Es gilt ϕ(m) = ϕ(n) · ϕ(o) und ϕ(pk) = pk−1 · (p− 1) mit p prim.
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