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Mathematical system that undergoes transition from
one state to another on a state space. It is a ran-
dom process and it is memoryless, i.e. the next state
depends only on the current state and not on the se-
quence of events

A master equation is a set of first-order differential
equations describing the time evolution of (usually)
the probability of a system to occupy each one of a
discrete set of states with regard to a continuous time
variable t:

dp(X, t)

dt
=
∑
Y

p(Y )W (Y → X)−
∑
Y

p(X)W (X → Y )

Start in configuration X and propose new configu-
ration Y with probability T (X → Y ). The pro-
posed configuration Y will be accepted with proba-
bility A(X → Y )

W (X → Y ) = T (X → Y ) ·A(X → Y )

At equilibrium, each elementary process should be
equilibrated by its reverse process.

Peq(Y )W (Y → X) = Peq(X)W (X → Y )

In stationary state one should have equilibrium dis-

tribution (Boltzmann): dP (X,t)
dt = 0 ⇔ Pst(X) =

Peq(X) =⇒
∑
Y Peq(Y )W (Y → X) =∑

Y Peq(X)W (X → Y ) =⇒ Detailed balance is a
sufficient condition for this equation to hold

• Ergodicity: ∀X,Y : W (X → Y ) > 0 (each con-
figuration is reachable)

• Normality:
∑
Y W (X → Y ) = 1

• Homogeneity:
∑
Y pst(Y )W (Y → X) = pst(X)

1. Store flip probabilities (in 2D there are 2, in 3D
there are 3)

P (k) = exp{−4βJk} k = 1/2σihi = 1, 2, 3 in 3D

2. Multi-spin coding: One word has 64 bits. Possi-
ble energy values in 3D: E = 0 . . . 6. Use 3 bits
to store energy value of site i. 64/3 = 21 sites
per word. Update 21 sites simultaneously and
reduce memory requirement by a factor 21.

1. Choose a random site i with spin σi

2. Calculate ∆E = E(Y )− E(X) = 2Jσihi

• hi =
∑

near. neighb. ofσi
σj is the local field

at site i

3. If ∆E ≤ 0 then flip spin, i.e. σi → −σi

4. If ∆E > 0 flip with probability exp{−β∆E}

Spontaneous magnetization is called the magnetiza-
tion in the absence of an external magnetic field. This
means that at low enough temperatures a given mag-
netic moment can influence the alignment of spins by
neihgbor-to-neighbor interactions. At the critical tem-
perature Tc the spontaneous magnetization vanishes.

The critical temperature Tc denotes the highest tem-
perature for which there can be non-zero magnetiza-
tion. At this point, the system undergoes and order-
to-disorder transition, called a phase transition. For
example, the spontaneous magnetization vanishes at
temperatures higher than the critical temperature.
For the 3D Ising model we have Tc = 4.51
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χ =
1

N

(
∂M

∂H

)
=
kBT

N

∂2 logZ

∂2H
kBT

1

Z

∂Z

∂H
= kBT

∂ logZ

∂H

The magnetic susceptibility χ is a parameter that
shows how much an extensive parameter changes when
an intensive paramater increases, thus χ tells us how
much the magnetization changes by increasing the
temperature. At the critical temperature Tc we ob-
serve that χ→∞

CV =
∂E

∂T

The specific heat C tells us how much the energy
changes with increasing temperature. At the critical
temperature Tc we observe a divergence of the specific
heat.

χ = β
[
〈M2〉 − 〈M〉2

]

The correlation length is the typical size of the clus-
ters that emerge at lower temperatures (T < Tc) and
shrink in size at higher temperatures.

C = β2
[
〈E2〉 − 〈E〉2

]

The correlation length diverges at Tc as:

ξ ∝ |T − Tc|−ν

with the critical exponent ν. At Tc we have for large
R:

C(R) ∝ R2−d−η

A correlation function describes the influence of parti-
cles on one another and is a measure of the order in a
system. The correlation function is defined as follows:

C(R) = 〈σ(0)σ(R)〉

where R is the radius. For T 6= Tc and for large R we
have:

C(R) ∝M2 + a exp{−R/ξ}

where ξ is the correlation length



Formula

Non-linear correlation function

Computational Statistical Physics

Formula

Non-linear correlation time

Computational Statistical Physics

Formula

Critical slowing down (non-linear correlation
time)

Computational Statistical Physics

Formula

Linear correlation function

Computational Statistical Physics

Formula

Linear correlation time

Computational Statistical Physics

Formula

Critical slowing down (linear correlation
time)

Computational Statistical Physics

Definition

How to generate decorrelated configurations

Computational Statistical Physics

Formula

Criical exponents of the correlation-times
(linear and non-linear)

Computational Statistical Physics

Definition

Critical exponent

Computational Statistical Physics

Definition

Critical exponents for specific heat,
spontaneous magnetization, susceptibility,

and correlation length

Computational Statistical Physics



The non-linear correlation time describes the relax-
ation towards equilibrium and is defined as:

τnl
A =

∫ ∞
0

Φnl
A (t)dt

Example:

Φnl
A (t) = exp{−t/τnl

A }

−τnl
A is the slope of the line resulting from plotting the

time t against log{Φnl
A (t)} for T 6= Tc

Suppose that the configuration at t0 is not at equilib-
rium, then define the non-linear-correlation function
as follows:

Φnl
A (t) =

〈A(t)〉 − 〈A(∞)〉)
〈A(t0)〉 − 〈A(∞)〉

〈A(∞)〉 is supposed to be at equilibrium.

With two quantities A and B in equilibrium define the
linear time correlation function as follows:

ΦAB(t) =
〈A(t0)B(t)〉 − 〈A〉〈B〉
〈AB〉 − 〈A〉〈B〉

Near the critical temperature, the relaxation time be-
comes very large and can be shown to diverge for an
infinite system: τ ∼ ξz ∼ |T −Tc|νz This phenomenon
is called critical slowing down.

τnl
A ∝ |T − Tc|z

nl
A

znl
A is the non-linear dynamical critical exponent

τAB ∝ |T − Tc|zAB

zAB is the linear dynamical critical exponent

The linear correlation time describes the relaxation in
equilibrium and is defined as:

τnl
A =

∫ ∞
0

ΦAB(t)dt

Example:

ΦAB(t) = exp{−t/τAB}

τnl(Tc) = Lz
nl/ν

τ(Tc) = Lz/ν

First, throw away n0 = cτnl(T ) configurations to reach
equilibrium. Then only take neq = cτ(T ) configura-
tion to have decorrelated samples. Use c ≈ 3 as a safe
value.

CV ∝ |T − Tc|−α

MS ∝ |T − Tc|β

χ ∝ |T − Tc|−γ

ξ ∝ |T − Tc|−ν

Critical exponents describe the behaviour of physi-
cal quantities near continues phase transitions (e.g.
second-order phase transitions). We want to describe
the behaviour of a physical quantity F in terms of a
power law around the critical temperature.
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〈Q(T )〉 =
1

ZT

∑
X

Q(X) exp{−E(X)/(kBT )}
Finite size scaling is a method to find the values of crit-
ical exponents by observing how measured quantities
vary for different lattice sizes.

χ(T ) =
∂〈M(T,H)〉

∂H

∣∣∣∣∣
H=0

=
∂

∂H

∑
X

∑N
i=1 σi exp{H0 + βH

∑N
i=1 σi}∑

X exp{H0 + βH
∑N
i=1 σi}

∣∣∣∣∣
H=0

with H0 = βJ

N∑
i,j:nn

σiσj and β =
1

kBT

The fluctuation-dissipation theorem states that the
linear response of a given system to an external pertur-
bation is expressed in terms of fluctuation properties
of the system in thermal equilibrium.
Dissipation: energy is transformed from some initial
form to some final form; the capacity of the final form
to do mechanical work is less than that of the initial
form.

1. Choose any A−B bond

2. Calculate ∆E for A−B → B −A

3. Flip with probability p = exp{−β∆E}/(1 +
exp{−β∆E}) (Glauber)

Glauber’s spin-flip probability fulfills detailed balance.

χ(T ) =
β
∑
X

(∑N
i=1 σi

)2

exp{H0 + βH
∑N
i=1 σi}

ZT (H)

∣∣∣∣∣
H=0

−
β
(∑

X

∑N
i=1 σi exp{H0 + βH

∑N
i=1 σi}

)2

(ZT (H))
2

∣∣∣∣∣
H=0

= β
(
〈M(T )2〉 − 〈M(T )〉2

)
=⇒ χ(T ) ≥ 0

1. Equilibrate system to reach a given target energy
Etarget

2. Flip random spin

3. Calculate ∆E

4. If ∆E < 0 then the flip is accepted, i.e.
Edemon = |∆E|+ Edemon

5. If ∆E > 0 then flip is only accepted if Edemon >
∆E. Else the flip is rejected

Creutz’s demon algorithm is used to simulate a micro-
canonical ensemble using a Monte Carlo simulation.
The energy is kept constant thanks to the existence of
an energy demon. The algorithm itself does not use
random numbers

One can see that by increasing the system size
we get a clear cut at T = 4.51 = Tc

The Binder cumulant is used to approximate Tc.

UL ≡ 1− 〈M
4〉L

3〈M2〉2L
−→
L→∞

{
0 for T > Tc

2/3 for T < Tc
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Second-order phase transitions (continuous phase
transitions) are characterized by a divergent suscep-
tibility, an infinite correlation length, and a power-law
decay of correlations near criticality.

For T < Tc the Ising model has at H = 0 a phase
transition (order-to-disorder transition) in H of the
first order, i.e. the system has a jump in magnetization
∆M and latent heat ∆E

One Swendsen-Wang step consists of the following:
For every spin σx,y,z check if it has already been dis-
covered, i.e. is already part of a cluster. If yes, go
to the next spin; else start a breadth-first-search from
the current spin σx,y,z during which a cluster is built.
Add an aligned nearest-neighbor (NN) of σx,y,z with
probability padd = 1 − exp{−2 · J · β} to the cluster.
After having checked all aligned NNs, flip the current
spin σx,y,z with probability pflip = 0.5.

Model consisting of q states, i.e. σi = 1, . . . , q with the
Hamiltonian H

H = E = −J
∑
i,j=nn

δσi,σj
−H1

∑
i

δσi1

The Potts model with q = 2 corresponds to the Ising
model.

~̈xi(t) = 1/mi

∑
j

~fij(t), ~fij = −∇V (rij(t))

~xi(t+ ∆t) = 2~xi(t)− ~xi(t−∆t) + ∆t2 ~̈xi(t)

~vi(t) =
~xi(t+ ∆t)− ~xi(t−∆t)

2∆t

Only store two time steps (t and t − ∆t). Error is
O(∆t4), i.e. third-order algorithm

One Wolff step consists of the following: Pick a ran-
dom spin σx,y,z and start to construct a single clus-
ter from there. At the beginning σx,y,z is added
to the cluster and is also flipped. From there now
construct the cluster recursively by adding aligned
nearest-neighbors (NNs) to the cluster with probabil-
ity padd = 1 − exp{−2 · J · β} and flipping each one
of the spins after having added it to the cluster. This
algorithm is an improvement over the Swendsen-Wang
algorithm because it has larger probability of flipping
bigger clusters.

Define around each particle i a neighborhood of radius
rl > 2rc. Vector list contains all neighborhoods. Vec-
tor point[i] contains the index of the first particle in
the neighborhood of i. Particles in the neighborhood
of i are: list[point[i]], . . . , list[point[i+1]-1]. Update
the Verlet table every n = rl−2rc

∆tvmax
; the algorithm runs

in O(N2).

~̈xi(t) = 1/mi

∑
j

~fij(t), ~fij = −∇V (rij(t))

~vi(t+ 1/2∆t) = ~vi(t− 1/2∆t) + ∆t ~̈x(t)

~xi(t+ ∆t) = ~xi(t) + ∆t~vi(t+ 1/2∆t)

Put a fine mesh on top of the system. Distribute
charges onto the mesh points. Calculate electrostatic
potential by solving the Poission equation on the mesh
using FFT. Calculate force on each particle by numer-
ically differentiating the potential and interpolating
back from the mesh to the particle position.

Divide domain in Md cells of length rl > 2rc. On
average we only need to test N · 3dN/Md particles.
Vector cells contains for each cell a list of all particles
within the cell. The algorithm is O(N).
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1. Errors should vanish at large particle distances

2. Momentum conservation: ~Fij = −~Fji

1. Nearest Grid Point: Put particle on nearest grid
point and also evaluate its force at the nearest
grid point

2. Cloud In Cell: Assign the charge to the 2nd near-
est grid points and also interpolate from these 2d

grid points.

Water molecule H2O consists of 3 atoms: a1 is the
upper-left H atom, a2 is the O atom, and a3 is bottom-
right H atom. Constraints that bonds have length d12

and d23:

χ12 = r2
12 − d2

12 = 0

χ23 = r2
23 − d2

23 = 0

with rij = ‖~rij‖

~gk =
1

2
λ12

~∇~xkχ12 +
1

2
λ23

~∇~xkχ23 λij Lagrange mult.

Split force into short and long range part: ~F = ~Fs+ ~Fl.
~Fl is small and smooth at short distances and is calcu-
lated using the particle-mesh algorithm. ~Fs is calcu-
lated exactly by solving Newton’s equation. Adaptive
P 3M : refine the mesh in the regions where the density
of masses is dense (e.g. cluster massing under gravity,
Fs ∼ O(N2); else when mass distribution is homoge-
neous: Fl ∼ O(N logN), Fs ∼ O(N)

Iω̇ = T

1. mi~̈xi = ~fi + ~gi

2. Introduce Lagrange multipliers λij in ~gi

3. Execute Verlet algorithm in two steps (one with
~fi, another with ~gi)

4. Obtain λij by inserting expressions into the con-
straint condition

5. Solve resulting coupled quadratic equations and
use resulting λij to calculate ~xi(t+ ∆t)

Tensor of inertia:
↔
I=

∑n
i=1mi(d

T
i ⊗ di − d2

i

↔
1 ). Its

eigenvectors span a body-fixed coord. system with ori-
gin in the center of mass. Transform from laboratory-

fixed (·l) to body-fixed (·b) system with
↔
A: ~eb =

↔
A ·~el.

Use ~T b =
↔
A ~T l and ~ωl(t + ∆t) =

↔
A
T

~ωb(t + ∆t). For

rotations (
↔
A is a combination of rotations), use Euler

angles φ, θ, ψ.

γ(t+ ∆t) = 2γ(t)− γ(t−∆t) + ∆t2
T (t)

I

We considered constant energy and constant volume,
i.e. we worked in the microcanonical ensemble. Most
commonly, however, experiments are performed at
constant temperature, i.e. in the canonical ensemble.
We couple the system to a heat bath to maintain a
constant temperature.

Q = (q0, q1, q2, q3) with q2
0 + q2

1 + q2
2 + q2

3 = 1
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Hnew =

N∑
i=1

~pi
2

2mis2
+

1

2
Qṡ2 + V ( ~x1, . . . ~xN ) + V (s)

Qs̈ =

N∑
i=1

mis ~̇
2xi −

1

s
(m+ 1)kBT

set ξ ≡ ṡ

s
to express equations in real time t

use
d log s

dt
= ξ

V (s) = (m+ 1)kBT log s

K(s) =
1

2
Qṡ

s is the new degree of freedom that describes the heat
bath. It introduces a new time scale dt′ = s dt

Hoover proved in 1985 that the Nosé-Hoover thermo-
stat is the only method with a single friction parameter
that gives the canonical distribution.

• Q is too large =⇒ equilibration is too slow

• Q→∞ =⇒ recovers microcanonical molecular
dynamics (but we want to simulate a canonical
ensemble!)

• Q is too small =⇒ temperature exhibits spuri-
ous oscillations. Use ∆T =

√
2/(Nd) T as the

width of the temperature distribution (d is the
dimension, N is the number of particles)

No forces are calculated in this method. Only bi-
nary collisions are considered, i.e. interactions be-
tween three or more particles are neglected. One needs
to calculate the time tc between two collisions and then
obtain the velocities of the two particles after the col-
lision from the velocities of the particles before the
collision from a look-up table.

In event driven simulations the collisions between par-
ticles are considered as instantaneous events and be-
tween them particles do not interact. The simulation
of rigid objects of finite volume (e.g. billiard balls)
cannot be done in classical MD because of the hard
core potential which results in infinite forces.

1. Calculate new collision times using cell-lists:
O(1)

2. Reorder heap of collision times: O(logN)

3. Move particles for smallest time available

4. Update particles involved with collision rule

Loop to calculate tc is of order N2. Lubachevsky trick:
keep track of the time of the event and the partner
particle involved in the event in a list of length N . For
all particles store: position, velocity, last event time,
last event partner, next event time, next event partner.

Inelasticity is described via the restitution coefficient
r.

• r = 1: elastic collisions (perfect bounce)

• r = 0: plastic collisions (plastic bounce)

During inellastic collisions energy is dissipated through
vibrations and eventually also small plastic deforma-
tion or heat production. Dissipation is quantified
through the material dependent restitution coefficient
r. One has r = 1 for elastic collisions and r = 0 in
case of perfect plasticity.
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The aim of histogram methods is to obtain functions
at one temperature from a simulation at another tem-
perature.

PT (E) = g(E) exp{−E/(kBT )}

g(E) describes the density of states, i.e. the number
of configurations that have energy E

If an inelastic sphere jumps on a plate it will perform
in a finite time ttot an infinity of collisions.

ttot =

∞∑
j=1

tj = 2

√
2hinitial

g

∑√
rj

= 2

√
2hinitial

g

(
1

1−
√
r
− 1

)

Distribution of average energy 〈E〉 gets sharper with
increasing size. Choosing configurations equally dis-
tributed over energy would be very ineffective, since
P (E) is mostly zero and only peaks at E = 〈E〉T .

Use a non biased random walk along the E axis. As-
sume ∆E > 0. Then, if E → E − ∆E, accept the
move. Else, if E → E + ∆E accept move with prob-
ability Ndown/Nup (removes bias, forcing probabilities
of increasing and decreasing the energy to be equal).
The region already visited along the E axis increases
its width proportionally to ∆E

√
t, like a random walk,

where t is the number of performed movements, i.e.
the length of the Markovian sequence of states.

Following the non biased random walk dynamics of
the broad histogram method, the probability for the
energy to jump from E to E+ ∆E is the same as that
of jumping back from E + ∆E to E, which can be
mathematically stated as

〈Ndown(E + ∆E)〉 · g(E + ∆E) = 〈Nup(E)〉 · g(E)

Calculate Q(T ′) using Q(T ) = 1/ZT
∑
E Q(E)PT (E)

with ZT =
∑
E PT (E). Use PT ′ =

g(E) exp{−E/(kBT ′)} = PT (E) exp{−E/(kBT ′) +
E/(kBT )}. PT is the canonical Boltzmann probability
distribution. Values of a quantity Q(T ) are sampled
close to the maximum of PT (E) which for large
systems is very peaked. If T and T ′ are not too close
the overlap between the distribution is very small so
that very few configuratoins are sampled around the
maximum uf T ′ =⇒ bad statistics

1. Choose a new configuration by flipping randomly
a spin

2. If E → E −∆E, then accept

3. If E → E + ∆E, then accept with probability
Ndown(E+∆E)

Nup(E)


