DEFINITION	Definition
Computational Statistical Physics	
Frühjahrssemester 2014	Markov chain
Giuseppe Accaputo	
www.accaputo.ch	
COMPUTATIONAL STATISTICAL PHYSICS	Computational Statistical Physics
Formula	Formula
Total probability of a Markov chain	Master equation
Computational Statistical Physics	Computational Statistical Physics
Properties	Formula
Properties of the total probability $W(X \rightarrow Y)$ of a Markov chain	Detailed balance
$W(X \rightarrow T)$ of a Markov chain	
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Single flip Metropolis algorithm (Ising Model)	Optimizations for the single flip Metropolis
	algorithm (3D Ising Model)
Computational Statistical Physics	Computational Statistical Physics
	DEFINITION
DEFINITION	DEFINITION
Critical temperature T_c	Spontaneous magnetization
Computational Statistical Physics	Computational Statistical Physics

Mathematical system that undergoes transition from one state to another on a state space. It is a ran- dom process and it is memoryless, i.e. the next state depends only on the current state and not on the se- quence of events	
A master equation is a set of first-order differential equations describing the time evolution of (usually) the probability of a system to occupy each one of a discrete set of states with regard to a continuous time variable t: $\frac{\mathrm{d}p(X,t)}{\mathrm{d}t} = \sum_{Y} p(Y)W(Y \to X) - \sum_{Y} p(X)W(X \to Y)$	Start in configuration X and propose new configu- ration Y with probability $T(X \to Y)$. The pro- posed configuration Y will be accepted with proba- bility $A(X \to Y)$ $W(X \to Y) = T(X \to Y) \cdot A(X \to Y)$
At equilibrium, each elementary process should be equilibrated by its reverse process. $P_{eq}(Y)W(Y \to X) = P_{eq}(X)W(X \to Y)$ In stationary state one should have equilibrium dis- tribution (Boltzmann): $\frac{dP(X,t)}{dt} = 0 \Leftrightarrow P_{st}(X) =$ $P_{eq}(X) \implies \sum_{Y} P_{eq}(Y)W(Y \to X) =$ $\sum_{Y} P_{eq}(X)W(X \to Y) \implies Detailed balance is a sufficient condition for this equation to hold$	 Ergodicity: ∀X, Y : W(X → Y) > 0 (each configuration is reachable) Normality: ∑_Y W(X → Y) = 1 Homogeneity: ∑_Y p_{st}(Y)W(Y → X) = p_{st}(X)
 Store flip probabilities (in 2D there are 2, in 3D there are 3) P(k) = exp{-4βJk} k = 1/2σ_ih_i = 1, 2, 3 in 3D Multi-spin coding: One word has 64 bits. Possible energy values in 3D: E = 06. Use 3 bits to store energy value of site i. 64/3 = 21 sites per word. Update 21 sites simultaneously and reduce memory requirement by a factor 21. 	 Choose a random site i with spin σ_i Calculate ΔE = E(Y) - E(X) = 2Jσ_ih_i h_i = ∑_{near. neighb. ofσ_i σ_j is the local field at site i} If ΔE ≤ 0 then flip spin, i.e. σ_i → -σ_i If ΔE > 0 flip with probability exp{-βΔE}
Spontaneous magnetization is called the magnetiza- tion in the absence of an external magnetic field. This means that at low enough temperatures a given mag- netic moment can influence the alignment of spins by neihgbor-to-neighbor interactions. At the critical tem- perature T_c the spontaneous magnetization vanishes.	The critical temperature T_c denotes the highest temperature for which there can be non-zero magnetization. At this point, the system undergoes and order-to-disorder transition, called a <i>phase transition</i> . For example, the spontaneous magnetization vanishes at temperatures higher than the critical temperature. For the 3D Ising model we have $T_c = 4.51$

L

Formula	Formula
Magnetization	Magnetic susceptibility
Computational Statistical Physics	Computational Statistical Physics
Formula	Definition
Specific heat	Magnetic susceptibility χ
Computational Statistical Physics	Computational Statistical Physics
Formula	Definition
Magnetic susceptibility χ (Monte Carlo simulations)	Specific heat C
Computational Statistical Physics	Computational Statistical Physics
Formula	Definition
Specific heat C (Monte Carlo simulations)	Correlation length (Ising model)
Computational Statistical Physics	Computational Statistical Physics
Formula	Formula
Correlation function and correlation length	Correlation length at the critical temperature T_c
Computational Statistical Physics	Computational Statistical Physics

Formula	Formula
Non-linear correlation function	Non-linear correlation time
Computational Statistical Physics	Computational Statistical Physics
Formula	Formula
Critical slowing down (non-linear correlation time)	Linear correlation function
Computational Statistical Physics	Computational Statistical Physics
Formula	Formula
Linear correlation time	Critical slowing down (linear correlation time)
Computational Statistical Physics	Computational Statistical Physics
DEFINITION	Formula
How to generate decorrelated configurations	Criical exponents of the correlation-times (linear and non-linear)
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Critical exponent	Critical exponents for specific heat, spontaneous magnetization, susceptibility, and correlation length
Computational Statistical Physics	Computational Statistical Physics

The non-linear correlation time describes the relax- ation towards equilibrium and is defined as: $\tau_A^{\rm nl} = \int_0^\infty \Phi_A^{\rm nl}(t) dt$ Example: $\Phi_A^{\rm nl}(t) = \exp\{-t/\tau_A^{\rm nl}\}$ $-\tau_A^{\rm nl} \text{ is the slope of the line resulting from plotting the time t against log}\{\Phi_A^{\rm nl}(t)\} \text{ for } T \neq T_c$	Suppose that the configuration at t_0 is not at equilibrium, then define the non-linear-correlation function as follows: $\Phi_A^{nl}(t) = \frac{\langle A(t) \rangle - \langle A(\infty) \rangle}{\langle A(t_0) \rangle - \langle A(\infty) \rangle}$ $\langle A(\infty) \rangle$ is supposed to be at equilibrium.
With two quantities A and B in equilibrium define the linear time correlation function as follows: $\Phi_{AB}(t) = \frac{\langle A(t_0)B(t)\rangle - \langle A\rangle\langle B\rangle}{\langle AB\rangle - \langle A\rangle\langle B\rangle}$	Near the critical temperature, the relaxation time be- comes very large and can be shown to diverge for an infinite system: $\tau \sim \xi^z \sim T - T_c ^{\nu z}$ This phenomenon is called critical slowing down. $\tau_A^{nl} \propto T - T_c ^{z_A^{nl}}$ z_A^{nl} is the non-linear dynamical critical exponent
$\tau_{AB} \propto T-T_c ^{z_{AB}}$ z_{AB} is the linear dynamical critical exponent	The linear correlation time describes the relaxation in equilibrium and is defined as: $\tau_A^{\rm nl} = \int_0^\infty \Phi_{AB}(t) dt$ Example: $\Phi_{AB}(t) = \exp\{-t/\tau_{AB}\}$
$\tau^{\mathrm{nl}}(T_c) = L^{z^{\mathrm{nl}}/\nu}$ $\tau(T_c) = L^{z/\nu}$	First, throw away $n_0 = c\tau^{nl}(T)$ configurations to reach equilibrium. Then only take $n_{eq} = c\tau(T)$ configura- tion to have decorrelated samples. Use $c \approx 3$ as a safe value.
$C_V \propto T - T_c ^{-\alpha}$ $M_S \propto T - T_c ^{\beta}$ $\chi \propto T - T_c ^{-\gamma}$ $\xi \propto T - T_c ^{-\nu}$	Critical exponents describe the behaviour of physi- cal quantities near continues phase transitions (e.g. second-order phase transitions). We want to describe the behaviour of a physical quantity F in terms of a power law around the critical temperature.

DEFINITION	Formula
Finite size scaling	Thermal average
Computational Statistical Physics	Computational Statistical Physics
Definition	DERIVATION
Fluctuation-dissipation theorem	Derive fluctuation-dissipation theorem for the susceptibility (Part 1 of 2)
Computational Statistical Physics	Computational Statistical Physics
DERIVATION	Definition
Derive fluctuation-dissipation theorem for the susceptibility (Part 2 of 2)	Kawasaki dynamics with Glauber spin flip
Computational Statistical Physics	Computational Statistical Physics
DEFINITION	Definition
Idea behind Creutz's demon algorithm	Creutz's demon algorithm for the Ising model
	Di or
Binder cumulant Computational Statistical Physics	Plot of Binder cumulant for system sizes N = 4, 6, 8 COMPUTATIONAL STATISTICAL PHYSICS

$$\langle Q(T) \rangle = \frac{1}{Z_T} \sum_{X} Q(X) \exp\{-E(X)/(k_B T)\}$$
Finite size scaling is a method to find the values of critical exponents by observing how measured quantities vary for different lattice sizes.
$$\begin{split} \chi(T) &= \frac{\partial (M(T,H))}{\partial H} \Big|_{H=0} \\ &= \frac{\partial}{\partial H} \sum_{X} \sum_{i=1}^{N} \sigma_i \exp\{H_0 + \beta H \sum_{i=1}^{N} \sigma_i\} \\ &= \frac{\partial}{\partial H} \sum_{X} \sum_{i=1}^{N} \sigma_i \exp\{H_0 + \beta H \sum_{i=1}^{N} \sigma_i\} \\ &= \frac{\partial}{\partial H} \sum_{X,y} \exp\{H_0 + \beta H \sum_{i=1}^{N} \sigma_i\} \\ &= \frac{\partial}{\partial H} \sum_{i,y=n}^{N} \sigma_i \sigma_i \text{ and } \beta = \frac{1}{k_B T} \end{split}$$
The fluctuation-dissipation theorem states that the linear response of a given system to an external perturbation is expressed in terms of fluctuation program of the system in the rand equilibrium. Dissipation: energy is transformed from some initial form to some final form, the capacity of the final form to ome child form, the capacity of the final form to ome child form. Single (A_1 + \beta H \sum_{i=1}^{N} \sigma_i) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial \Delta E} \sum_{i,j=n} (A_i + \beta H - \beta - A) \\ &= \frac{\partial}{\partial (M(T)^2) - (A_i(T))^2} = \frac{\partial}{\partial (M(T)^2)} \Big|_{H=0} \\ &= \frac{\partial}{\partial (M(T)^2) - (A_i(T))^2} \\ \\ &= \frac{\partial}{\partial (M(T)^2) - (A_i(T

DEFINITION	DEFINITION
First-order phase transitions (Potts model, Ising model)	Second-order phase transitions
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
The Potts model	Swendsen-Wang algorithm (3D Ising model)
Computational Statistical Physics	Computational Statistical Physics
Definition	Formula
Wolff algorithm (3D Ising model)	Verlet method to calculate $\vec{x}(t + \Delta t), \vec{v}(t)$
Computational Statistical Physics	Computational Statistical Physics
Formula	Definition
Leap frog method to calculate $\vec{x}(t + \Delta t), \vec{v}(t + 1/2\Delta t)$	Verlet tables
Computational Statistical Physics	Computational Statistical Physics
DEFINITION	DEFINITION
Linked cell method	Particle-Mesh algorithm
Computational Statistical Physics	Computational Statistical Physics

Second-order phase transitions (continuous phase transitions) are characterized by a divergent susceptibility, an infinite correlation length, and a power-law decay of correlations near criticality.	For $T < T_c$ the Ising model has at $H = 0$ a phase transition (order-to-disorder transition) in H of the first order, i.e. the system has a jump in magnetization ΔM and latent heat ΔE
One Swendsen-Wang step consists of the following: For every spin $\sigma_{x,y,z}$ check if it has already been dis- covered, i.e. is already part of a cluster. If yes, go to the next spin; else start a breadth-first-search from the current spin $\sigma_{x,y,z}$ during which a cluster is built. Add an aligned nearest-neighbor (NN) of $\sigma_{x,y,z}$ with probability $p_{\text{add}} = 1 - \exp\{-2 \cdot J \cdot \beta\}$ to the cluster. After having checked all aligned NNs, flip the current spin $\sigma_{x,y,z}$ with probability $p_{\text{flip}} = 0.5$.	Model consisting of q states, i.e. $\sigma_i = 1, \ldots, q$ with the Hamiltonian H $H = E = -J \sum_{i,j=nn} \delta_{\sigma_i,\sigma_j} - H_1 \sum_i \delta_{\sigma_i 1}$ The Potts model with $q = 2$ corresponds to the Ising model.
$\begin{split} \ddot{\vec{x}}_i(t) &= 1/m_i \sum_j \vec{f}_{ij}(t), \qquad \vec{f}_{ij} = -\nabla V(r_{ij}(t)) \\ \vec{x}_i(t + \Delta t) &= 2\vec{x}_i(t) - \vec{x}_i(t - \Delta t) + \Delta t^2 \ \ddot{\vec{x}}_i(t) \\ \vec{v}_i(t) &= \frac{\vec{x}_i(t + \Delta t) - \vec{x}_i(t - \Delta t)}{2\Delta t} \\ \end{split}$ Only store two time steps (t and $t - \Delta t$). Error is $O(\Delta t^4)$, i.e. third-order algorithm	One Wolff step consists of the following: Pick a ran- dom spin $\sigma_{x,y,z}$ and start to construct a single clus- ter from there. At the beginning $\sigma_{x,y,z}$ is added to the cluster and is also flipped. From there now construct the cluster recursively by adding aligned nearest-neighbors (NNs) to the cluster with probabil- ity $p_{\text{add}} = 1 - \exp\{-2 \cdot J \cdot \beta\}$ and flipping each one of the spins after having added it to the cluster. This algorithm is an improvement over the Swendsen-Wang algorithm because it has larger probability of flipping bigger clusters.
Define around each particle <i>i</i> a neighborhood of radius $r_l > 2r_c$. Vector <i>list</i> contains all neighborhoods. Vector <i>point[i]</i> contains the index of the first particle in the neighborhood of <i>i</i> . Particles in the neighborhood of <i>i</i> are: <i>list[point[i]]</i> ,, <i>list[point[i+1]-1]</i> . Update the Verlet table every $n = \frac{r_l - 2r_c}{\Delta t v_{\text{max}}}$; the algorithm runs in $O(N^2)$.	$\ddot{\vec{x}}_i(t) = 1/m_i \sum_j \vec{f}_{ij}(t), \qquad \vec{f}_{ij} = -\nabla V(r_{ij}(t))$ $\vec{v}_i(t+1/2\Delta t) = \vec{v}_i(t-1/2\Delta t) + \Delta t \ \ddot{\vec{x}}(t)$ $\vec{x}_i(t+\Delta t) = \vec{x}_i(t) + \Delta t \vec{v}_i(t+1/2\Delta t)$
Put a fine mesh on top of the system. Distribute charges onto the mesh points. Calculate electrostatic potential by solving the Poission equation on the mesh using FFT. Calculate force on each particle by numer- ically differentiating the potential and interpolating back from the mesh to the particle position.	Divide domain in M^d cells of length $r_l > 2r_c$. On average we only need to test $N \cdot 3^d N/M^d$ particles. Vector <i>cells</i> contains for each cell a list of all particles within the cell. The algorithm is $O(N)$.

DEFINITION	DEFINITION
Particle-Mesh algorithm types	Criteria for a good particle-mesh scheme
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Particle-particle particle mesh (P^3M) algorithm	Constraint method with Lagrange multipliers to implement fixed distances inside the water molecule
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Constraint method: steps to calculate new position	Rigid bodies: equation of motion for rotation
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Evolution of rotation angle in 2D using Verlet algorithm	Evolution of rotation angle in 3D
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Quaternions	Nosé-Hoover thermostat: idea
Computational Statistical Physics	Computational Statistical Physics

1. Errors should vanish at large particle distances 2. Momentum conservation: $\vec{F}_{ij} = -\vec{F}_{ji}$	 Nearest Grid Point: Put particle on nearest grid point and also evaluate its force at the nearest grid point Cloud In Cell: Assign the charge to the 2nd near- est grid points and also interpolate from these 2^d grid points.
Water molecule H_2O consists of 3 atoms: a_1 is the upper-left H atom, a_2 is the O atom, and a_3 is bottomright H atom. Constraints that bonds have length d_{12} and d_{23} : $\chi_{12} = r_{12}^2 - d_{12}^2 = 0$ $\chi_{23} = r_{23}^2 - d_{23}^2 = 0$ with $r_{ij} = \ \vec{r}_{ij}\ $ $\vec{g}_k = \frac{1}{2}\lambda_{12}\vec{\nabla}\vec{x}_k\chi_{12} + \frac{1}{2}\lambda_{23}\vec{\nabla}\vec{x}_k\chi_{23} \lambda_{ij}$ Lagrange mult.	Split force into short and long range part: $\vec{F} = \vec{F}_s + \vec{F}_l$. \vec{F}_l is small and smooth at short distances and is calculated using the particle-mesh algorithm. \vec{F}_s is calculated exactly by solving Newton's equation. Adaptive P^3M : refine the mesh in the regions where the density of masses is dense (e.g. cluster massing under gravity, $F_s \sim O(N^2)$; else when mass distribution is homogeneous: $F_l \sim O(N \log N), F_s \sim O(N)$
$I\dot{\omega} = T$	 m_i x i = f i + g i 2. Introduce Lagrange multipliers λ ij in g i 3. Execute Verlet algorithm in two steps (one with f i, another with g i) 4. Obtain λ ij by inserting expressions into the constraint condition 5. Solve resulting coupled quadratic equations and use resulting λ ij to calculate x i(t + Δt)
Tensor of inertia: $\overleftrightarrow{I} = \sum_{i=1}^{n} m_i (d_i^T \otimes d_i - d_i^2 \overleftrightarrow{1})$. Its eigenvectors span a body-fixed coord. system with ori- gin in the center of mass. Transform from laboratory- fixed (· ^l) to body-fixed (· ^b) system with $\overleftrightarrow{A}: \vec{e}^b = \overleftrightarrow{A} \cdot \vec{e}^t$. Use $\vec{T}^b = \overleftrightarrow{A} \vec{T}^l$ and $\vec{\omega}^l (t + \Delta t) = \overleftrightarrow{A}^T \vec{\omega}^b (t + \Delta t)$. For rotations (\overleftrightarrow{A} is a combination of rotations), use Euler angles ϕ, θ, ψ .	$\gamma(t + \Delta t) = 2\gamma(t) - \gamma(t - \Delta t) + \Delta t^2 \frac{T(t)}{I}$
We considered constant energy and constant volume, i.e. we worked in the microcanonical ensemble. Most commonly, however, experiments are performed at constant temperature, i.e. in the canonical ensemble. We couple the system to a heat bath to maintain a constant temperature.	$Q = (q_0, q_1, q_2, q_3)$ with $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$

Formula	Formula
Nosé-Hoover thermostat: potential and kinetic energy	Nosé-Hoover thermostat: new Hamiltonian and new equations of motion in the new time t'
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Nosé-Hoover thermostat: selection of Q	Important fact about the Nosé-Hoover thermostat
Computational Statistical Physics	Computational Statistical Physics
DEFINITION	Definition
Event driven simulations	Event driven molecular dynamics
Computational Statistical Physics	Computational Statistical Physics
DEFINITION	Definition
Event driven simulations: Lubachevsky's Tricks	Event driven simulations: Steps
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Inelastic collisions	Inelasticity
Computational Statistical Physics	Computational Statistical Physics

$H_{\text{new}} = \sum_{i=1}^{N} \frac{\vec{p_i}^2}{2m_i s^2} + \frac{1}{2}Q\dot{s}^2 + V(\vec{x_1}, \dots, \vec{x_N}) + V(s)$ $Q\ddot{s} = \sum_{i=1}^{N} m_i s \ \dot{\vec{x}}_i^2 - \frac{1}{s}(m+1)k_BT$ $\text{set } \xi \equiv \frac{\dot{s}}{s} \text{to express equations in real time } t$ $\text{use } \frac{d\log s}{dt} = \xi$	$V(s) = (m+1)k_BT\log s$ $K(s) = \frac{1}{2}Q\dot{s}$ s is the new degree of freedom that describes the heat bath. It introduces a new time scale dt' = s dt
Hoover proved in 1985 that the Nosé-Hoover thermo- stat is the only method with a single friction parameter that gives the canonical distribution.	 Q is too large ⇒ equilibration is too slow Q → ∞ ⇒ recovers microcanonical molecular dynamics (but we want to simulate a canonical ensemble!) Q is too small ⇒ temperature exhibits spurious oscillations. Use ΔT = √2/(Nd) T as the width of the temperature distribution (d is the dimension, N is the number of particles)
No forces are calculated in this method. Only bi- nary collisions are considered, i.e. interactions be- tween three or more particles are neglected. One needs to calculate the time t_c between two collisions and then obtain the velocities of the two particles after the col- lision from the velocities of the particles before the collision from a look-up table.	In event driven simulations the collisions between par- ticles are considered as instantaneous events and be- tween them particles do not interact. The simulation of rigid objects of finite volume (e.g. billiard balls) cannot be done in classical MD because of the hard core potential which results in infinite forces.
 Calculate new collision times using cell-lists: O(1) Reorder heap of collision times: O(log N) Move particles for smallest time available Update particles involved with collision rule 	Loop to calculate t_c is of order N^2 . Lubachevsky trick: keep track of the time of the event and the partner particle involved in the event in a list of length N . For all particles store: position, velocity, last event time, last event partner, next event time, next event partner.
 Inelasticity is described via the restitution coefficient r. r = 1: elastic collisions (perfect bounce) r = 0: plastic collisions (plastic bounce) 	During inellastic collisions energy is dissipated through vibrations and eventually also small plastic deforma- tion or heat production. Dissipation is quantified through the material dependent restitution coefficient r. One has $r = 1$ for elastic collisions and $r = 0$ in case of perfect plasticity.

Definition	DEFINITION
Finite time singularity	Aim of histogram methods
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Broad histogram method	Broad histogram method: problem of sampling
Computational Statistical Physics	Computational Statistical Physics
Definition	Definition
Broad histogram method: problem of histogram methods	Broad histogram method: Equivalent condition to detailed balance to reach a homogeneous steady state
Computational Statistical Physics	Computational Statistical Physics
Definition	
Broad histogram method with Metropolis	
Computational Statistical Physics	

The aim of histogram methods is to obtain functions at one temperature from a simulation at another tem- perature. $P_T(E) = g(E) \exp\{-E/(k_B T)\}$ $g(E)$ describes the density of states, i.e. the number of configurations that have energy E	If an inelastic sphere jumps on a plate it will perform in a finite time t_{tot} an infinity of collisions. $t_{\text{tot}} = \sum_{j=1}^{\infty} t_j = 2\sqrt{\frac{2h^{\text{initial}}}{g}} \sum \sqrt{r^j}$ $= 2\sqrt{\frac{2h^{\text{initial}}}{g}} \left(\frac{1}{1-\sqrt{r}} - 1\right)$
Distribution of average energy $\langle E \rangle$ gets sharper with increasing size. Choosing configurations equally dis- tributed over energy would be very ineffective, since $P(E)$ is mostly zero and only peaks at $E = \langle E \rangle_T$.	Use a non biased random walk along the E axis. Assume $\Delta E > 0$. Then, if $E \to E - \Delta E$, accept the move. Else, if $E \to E + \Delta E$ accept move with probability $N_{\text{down}}/N_{\text{up}}$ (removes bias, forcing probabilities of increasing and decreasing the energy to be equal). The region already visited along the E axis increases its width proportionally to $\Delta E \sqrt{t}$, like a random walk, where t is the number of performed movements, i.e. the length of the Markovian sequence of states.
Following the non biased random walk dynamics of the broad histogram method, the probability for the energy to jump from E to $E + \Delta E$ is the same as that of jumping back from $E + \Delta E$ to E, which can be mathematically stated as $\langle N_{\text{down}}(E + \Delta E) \rangle \cdot g(E + \Delta E) = \langle N_{\text{up}}(E) \rangle \cdot g(E)$	Calculate $Q(T')$ using $Q(T) = 1/Z_T \sum_E Q(E)P_T(E)$ with $Z_T = \sum_E P_T(E)$. Use $P_{T'} = g(E) \exp\{-E/(k_BT')\} = P_T(E) \exp\{-E/(k_BT') + E/(k_BT)\}$. P_T is the canonical Boltzmann probability distribution. Values of a quantity $Q(T)$ are sampled close to the maximum of $P_T(E)$ which for large systems is very peaked. If T and T' are not too close the overlap between the distribution is very small so that very few configurations are sampled around the maximum uf $T' \implies$ bad statistics
	 Choose a new configuration by flipping randomly a spin If E → E − ΔE, then accept If E → E + ΔE, then accept with probability ^{N_{down}(E+ΔE)}/_{N_{up}(E)}