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Abstract

The computation of electrostatic interactions in periodic systems of
charges is a computationally expensive task due to the long-range na-
ture of these interactions. The Ewald method speeds up such compu-
tations by splitting the long-range interaction into two contributions,
evaluated in real and reciprocal space, respectively. The Wigner poten-
tial is a constant representing the self-energy of a charge and depends
exclusively on the size and shape of the unit cell. The Ewald method
provides a way to efficiently calculate the Wigner potential. In this
thesis, the Wigner potential is analyzed based on different unit cells
with the goal to find a simple analytical term accurately describing
the Wigner potential. In a first part the Wigner potential is derived
based on the Ewald method. Next, an implementation of the Wigner
potential calculation using the Ewald method for general unit cells is
discussed and provided. Since the convergence of the Wigner potential
calculation depends on a specific parameter introduced by the Ewald
method, the calculation of the optimal value for this specific parame-
ter is examined, such that the convergence of the calculation and thus
the correct numerical evaluation of the Wigner potential is guaranteed.
Finally, the Wigner potential is analyzed based on the variation of the
shape and size of the unit cell. For the fitting of the resulting curves
models are provided based on nonlinear regression. Since the models
provided for the curve fitting depend on multiple model parameters
and the corresponding residues show trends, thus indicating the unsat-
isfactory quality of the models it is concluded that a simple analytical
expression for the Wigner potential may not exist.
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Chapter 1

Introduction

The calculation and accurate treatment of electrostatic interactions in a molec-
ular system is an essential requirement for performing a reliable explicit-
solvent simulation of solvated molecules. Such biological systems of inter-
est range in size from about a thousand to several thousands of molecules.
Periodic boundary conditions are used to effectively represent the many
properties of a bulk macroscopic system with a relatively small number of
particles. The system is built from a simulation box surrounded by an infi-
nite number of periodic copies of itself in all the three cartesian directions,
completely filling the space. By applying periodic boundary conditions, sur-
face effects arising from a finite size system and the resultant residing of a
very substantial fraction of the particles on the surface are eliminated due to
the infinite nature of the system.

The computation of electrostatic interactions requires the calculation of all
the pair-wise interactions. The computational effort for this operation is pro-
portional to the square of the number of particles, resulting in a computation-
ally rather expensive task. This issue is particularly relevant in regard to the
long-range part of intermolecular interactions (e.g. Coulombic interactions)
in periodic systems. One way of solving the problem of the long-range inter-
actions is the application of cutoff-based methods. Such methods introduce
a shifting or scaling of Coulomb’s law to force the Coulombic interactions to
become negligible beyond a convenient distance defined by a cutoff radius.
These approaches reduce the computational effort, but give rise to serious
inaccuraces by altering the physical law. The effects on simulated quanti-
ties are difficult to anticipate, generating unsuitable approximations which
are responsible for significantly modifying the energies and conformations
sampled in a simulation [9].

Lattice-sum methods belong also to the family of methods used for the task
of computing long-range interactions and have been successfully applied
to calculate stable trajectories of solvated molecules in cases where cutoff-
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1. Introduction

based methods failed to do so [5]. A drawback of this method is that the
electrostatic interactions are treated as exactly periodic. The periodicity also
limits the accuracy of these methods due to errors committed during the
numerical evaluation of the interactions [4]. Introducing periodicity may
be reasonable for the simulation of crystals, but can lead to undesirable
periodicity-induced artifacts in the simulations of solutions and may also
have significant influence on the solvation of conformational properties of
molecules [5]. Nonetheless, lattice-sum methods are commonly used for cal-
culating long-range interactions. The Ewald method is a lattice-sum method
that successfuly accelerates the calculation of the long-range interaction by
dividing it into two parts: a short-range contribution which is calculated
in real space and a long-range contribution which is calculated in Fourier
space. The splitting itself introduces a constant called the Wigner potential,
whose numerical value depends on the shape and size of the simulation box.
In the particular case of a cubic unit cell of edge L, the numerical evaluation
of the Wigner potential ΨWI leads to ΨWI ≈ −2.837297 L−1 [5]. Since in prac-
tice unit cells other than the unit cube are used to construct various crystal
systems, the goal of this thesis is to analyze the behaviour of the Wigner
potential for different crystal systems and try to extract a simple analytical
form of the potential, which then can be used to efficiently calculate the
Wigner potential in simulations [6].
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Chapter 2

Theory

This chapter introduces crystal systems, a concept used to describe various
lattice systems. The issues arising from a periodic system of charges are
discussed, followed by the presentation of a general periodic solution of the
Poisson equation using Fourier series. Further, a solution for the electrostatic
potential Φ(r) used for the physical problem consisting of periodic charges
is shown. Most of the equations presented in this section are taken from [5];
equations taken from other sources are appropriately referenced in the text.

2.1 Periodic System of Charges

2.1.1 Crystal Lattice and Crystal Systems

For the representation of the periodic system of charges, the crystal lattice
and crystal systems are introduced. For a crystal lattice, periodicity is de-
fined by three generally non-orthogonal vectors L1, L2, L3 ∈ R3 [5]; the lat-
tice itself is a collection of lattice points that can be generated by a set of
discrete translation operations described by the vectors L1, L2, L3 and the
components of the repeat vector n = (n1, n2, n3)ᵀ ∈ Z3:

r = n1L1 + n2L2 + n3L3 = L n . (2.1)

The three-dimensional unit cell C is the smallest unit of volume in the crystal
lattice that contains one or more atoms arranged in three-dimensions and is
described by the matrix L, which is defined as L = (L1, L2, L3) ∈ R3×3 and
is referred to as the unit cell size [5]; the volume of C is denoted by

V = det(L) . (2.2)
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2. Theory

Table 2.1: Characteristics of the seven chrystal systems [1]

Structure Edge Lengths Angles between Edges
Cubic a = b = c α = β = γ = 90◦

Tetragonal a = b 6= c α = β = γ = 90◦

Orthorhombic a 6= b 6= c α = β = γ = 90◦

Hexagonal a = b 6= c α = β = 90◦, γ = 120◦

Rhombohedral a = b = c α = β = γ 6= 90◦

Monoclinic a 6= b 6= c α = γ = 90◦, β 6= 90◦

Triclinic a 6= b 6= c α 6= β 6= γ 6= 90◦

The positions of the atoms inside the unit cell can be represented in terms of
fractional coordinates. The fractional coordinates corresponding to a Carte-
sian vector q are defined as the components of the vector s ∈ R3 for which
[5]

q = L s . (2.3)

The unit cell itself describes the bulk arrangement of the system. The com-
plete crystal lattice can be constructed by a regular stacking of unit cells
in a systematic fashion without overlapping and without gaps [7]. There
are seven unique arrangements of unit cells, known as crystal systems, that
can each be used to fill three-dimensional space [1]; these are cubic, tetrag-
onal, orthorhombic, rhombohedral, hexagonal, monoclinic, and triclinic. In
the case of the seven presented crystal systems, the unit cell C is a paral-
lelepiped in shape with edge lengths a, b, c and angles α, β, γ between the
edges [1] (Figure 2.1 and Table 2.1) and is characterized by the column vec-
tors of the unit cell size L [7]. For a parallelepiped C, the specific unit cell
size L is given by [11]

L =

a b cos(γ) c cos(β)

0 b sin(γ) c cos(α)−cos(β) cos(γ)
sin(γ)

0 0 c v
sin(γ)

 . (2.4)

Further, the inverse matrix L−1 can be written as [11]

L−1 =


1
a − cos(γ)

a sin(γ)
cos(α) cos(γ)−cos(β)

av sin(γ)

0 1
b sin(γ)

cos(β) cos(γ)−cos(α)
bv sin(γ)

0 0 sin(γ)
cv

 , (2.5)
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2.1. Periodic System of Charges

Figure 2.1: The unit cell C defined in terms of a parallelepiped with edge
lengths a, b, c and the angles α, β, γ between the edges [2]

In both Eqs. 2.4 and 2.5, v is the volume of the unit parallelepiped and is
defined as

v = det(L̃) , (2.6)

where L̃ is the same as L in Eq. 2.4, except for a, b, c are set explicitly to 1.

2.1.2 Issues Arising from a Periodic System of Charges

The infinite nature of the periodic system of charges represented by a crys-
tal lattice gives raise to issues in regard to the calculation of the Coulomb
interaction energy. To better understand these issues consider a system box
represented by the unit cell C consisting of Nq point charges {qi} at locations
{ri ∈ C} in vacuum, surrounded by an infinite number of periodic copies of
itself. The total Coulomb interaction energy is [8]

E =
1

4πε0
∑
(i,j)

qiqj

‖ri − rj‖
, (2.7)

where ε0 is the vacuum permittivity and the sum is over all pairs (i, j). Since
the system is subjected to periodic boundary conditions and the unit cell
C is described by the three unit vectors L1, L2, L3 ∈ R3, if there is a point
charge qi at location ri ∈ C, there are also point charges qi called periodic
images of qi at

ri + n1L1 + n2L2 + n3L3 = ri + L n , (2.8)

with n = (n1, n2, n3) ∈ Z3. The total Coulomb interaction energy for a peri-
odic system consisting of point charges has now to include the interactions
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2. Theory

between an infinite number of charges [8]:

E =
1

4πε0
∑

n∈Z3
∑
(i,j)

qiqj

‖ri − rj + L n‖ . (2.9)

The sum over all pairs can be rewritten into sums over all point charges [8]:

E =
1

4πε0

1
2 ∑

n∈Z3

Nq

∑
i=1

Nq

∑
j=1

′ qiqj

‖ri − rj + L n‖ . (2.10)

The ′ symbol in Eq. 2.10 is used to denote that for the case n = 0 the
term i = j is excluded from the sum; the factor 1/2 instead is introduced
to cancel out the double-counting. The infinite sum in Eq. 2.10 cannot be
used to calculate the electrostatic energy in a simulation since the sum is
conditionally convergent and the result therefore depends on the order of
summation. In order to improve the convergence of the sum presented in
Eq. 2.10, the expression for the charge density is rewritten in the following
sections.

2.1.3 General Solution of the Poisson Equation Using Fourier Se-
ries

The electrostatic potential of a given system is governed by Poisson’s equa-
tion. Before defining a solution for the electrostatic potential of the periodic
system of charges, a general solution of the Poisson equation using Fourier
series is derived in this section. In general, the Poisson equation can be
written as

∇2 f (r) = −4πg(r) ⇐⇒
{
∇ · F(r) = −4πg(r)
∇ f (r) = F(r)

. (2.11)

The source density g(r) and the vector function F(r) are required to be pe-
riodic functions, whereas for the function f (r) this requirement does not
necessarily have to hold [5]. The general solution of Eq. 2.11 can be written
as

f (r) = 4πV−1 ∑
l∈ tZ3, ‖l‖6=0

k−2 ĝ(k) exp {ikr}+ α , (2.12)

where ĝ(k) are the Fourier coefficients of g(r) and are calculated using Eq.
A.2, and α is an extrinsic term. Further, the wavevector k is defined as
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2.1. Periodic System of Charges

k = 2πlL−1 and k = ‖k‖. tZ3 denotes the space of row vectors with integer
components; consequently, the product lL−1 is well-defined and kr can be
interpreted as a matrix product. If the periodicity of f (r) is a requirement,
then both F0 and f0 have to vanish, i.e. F0 = 0 and f0 = 0 [5]. In this very
case, the special solution for f (r) is called the influence function for a g-shaped
source.

Eq. 2.11 can be also solved with the use of a Green’s function. By definition,
a Green’s function G(r, r0) is any solution of [10]

WG(r, r0) = δ(r− r0) , (2.13)

where W is a linear differential operator, δ the Dirac delta function and s a
point in the Euclidean space Rn. For the solution of Eq. 2.11 consisting of
a Green’s function, a source density χ(r) is defined in terms of a periodic δ-
shaped source density plus a homogeneous neutralizing background charge:

χ(r) = δp(r)−V−1 . (2.14)

δp(r) is the periodic Dirac delta function and is defined as

δp(r) = ∑
n∈Z3

δ(r + L n) = ∑
n∈Z3

1
4πr2 δ(‖r + L n‖) , (2.15)

with δ(‖r‖) = δ(r) being the one-dimensional and δ(r) the three-dimensional
Dirac delta function respectively. The function Ψ(r) is now a solution of

∇2Ψ(r) = −4π χ(r) = −4π
[
δp(r)−V−1

]
. (2.16)

Since the periodicity of the solution Ψ(r) of Eq. 2.16 is a requirement im-
posed by the physical problem at hand, Ψ(r) should additionally satisfy the
conditions [5]

〈Ψ(r)〉C = V−1Ψ̂(0) = 0 , (2.17a)

〈∇Ψ(r)〉C = V−1∇̂Ψ(0) = 0 , (2.17b)

where Ψ̂(k) are the Fourier coefficients of the solution Ψ(r). By combining
the general solution shown in Eq. 2.12 and the conditions from Eqs. 2.17a
and 2.17b, the particular solution Ψ(r) of Eq. 2.16 can be expressed as
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2. Theory

Ψ(r) = 4πV−1 ∑
l∈ tZ3, ‖l‖6=0

k−2 exp {ikr} . (2.18)

The solution Ψ(r) (Eq. 2.18) resulting from Eq. 2.16 with the imposed condi-
tions from Eqs. 2.17a and 2.17b is called the influence function for a χ-shaped
source. The Fourier coefficients of the function f (r) in Eq. 2.12 with α = 0
are defined as

f̂ (k) = 4πk−2 ĝ(k)[1− δk] , (2.19)

where δk is the Kronecker delta, i.e. δk = 0 ⇔ k = 0 and δk = 1 otherwise.
In addition, the Fourier coefficients of Ψ(r) from Eq. 2.18 are given by

Ψ̂(k) = 4πk−2[1− δk] . (2.20)

By combining Eqs. 2.19 and 2.20, f̂ (k) from Eq. 2.19 can be rewritten as

f̂ (k) = ĝ(k)Ψ̂(k) . (2.21)

Since f̂ (k) in Eq. 2.21 is a multiplication of the Fourier coefficients of Ψ(r)
and g(r), taking into consideration Eqs. A.3 and A.4 the general solution for
f (r) is simply the convolution (g ? Ψ)(r) and is thus given by

f (r) =
∫ ∫ ∫

C
d3r′ g(r′)Ψ(r− r′) , (2.22)

with Ψ(r) being the Green’s function for the Poisson equation under peri-
odic boundary conditions [5].

2.1.4 The Electrostatic Potential

Considering the approach presented in the previous section for finding a
general periodic solution of Poisson’s equation, the goal of this section is to
define a specific solution of Poisson’s equation for the electrostatic potential
Φ(r) in a periodic system of charges. Generally, in a periodic or non-perodic
system, the electrostatic potential Φ(r) is a solution of
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2.1. Periodic System of Charges

∇2Φ(r) = − 1
ε0

ρ(r) , (2.23)

where ρ(r) is the charge density in the system. The charge density ρi(r) for
a point charge qi is

ρi(r) = qiδ(r− ri) . (2.24)

Under non-periodic boundary conditions, the charge density reads

ρNP(r) =
Nq

∑
i=1

qiδ(r− ri) . (2.25)

The expression ρNP(r) can be generalized under periodic boundary condi-
tions by replacing δ(r) with the periodic point charge plus homogeneous
neutralizing background charge χ(r)defined in Eq. 2.14 [5]; the charge den-
sity under periodic boundary conditions may be now written as

ρ(r) =
Nq

∑
i=1

qi χ(r− ri) . (2.26)

By defining the quantity

SC =
Nq

∑
i=1

qi (2.27)

representing the charge of the unit cell and the function s(r) as

s(r) =
Nq

∑
i=1

qi δp(r− ri) , (2.28)

the charge density can be rewritten to

ρ(r) = s(r)−V−1SC . (2.29)

9



2. Theory

By combining Eq. 2.23 and Eq. 2.29, the periodic electrostatic potential Φ(r)
must be a solution of

∇2Φ(r) = ρ(r) = s(r)−V−1SC . (2.30)

Since Eq. 2.30 consists of a δ-shaped source term, as mentioned in section
2.1.3 it is suitable to use a Green’s function for the solution of this equation.
The general solution of Eq 2.30 is therefore given by

Φ(r) =
1

4πε0

∫ ∫ ∫
C

d3 r′Ψ(r− r′)s(r′) + Φext(r) , (2.31)

where Ψ(r) is a Green’s function under periodic boundary condition and
Φext(r) being the extrinsic potential. The detailed derivation of the solution
of Eq. 2.31 and a definition of Φext(r) are shown elsewhere [5].

The electrostatic free energy ∆Gel represents the work required to reversibly
charge the system and is defined as

∆Gel = ∆Gint + ∆Gext , (2.32)

with

∆Gint =
1

8πε0

∫ ∫ ∫
C

d3rs(r)
∫ ∫ ∫

C
d3r′Ψ̃(r− r′)s(r′) . (2.33)

Since ∆Gint originally is an infinite quantity due to the infinite Coulombic
self-energy at a point charge, the Green’s function Ψ(r) is replaced by the
following non-singular Green’s function Ψ̃(r) in Eq. 2.33 to make ∆Gint a
finite quantity [5]:

Ψ̃(r) =

{
Ψ(r) r 6= 0
ΨWI = limr→0

[
Ψ(r)− 1

r

]
r = 0

. (2.34)

The term ΨWI is a constant related to the Wigner potential and depends
exclusively on the shape and size of the unit cell [5].
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2.2. The Ewald Method

2.2 The Ewald Method

Since the direct summation of Eq. 2.10 is impracticable due to the slowly
decaying long-range part of the Coulomb potential and the singularity at
the origin, the goal of this section is to explain how the convergence of the
sum presented in Eq. 2.10 can be improved with the help of the Ewald
method [5]. The idea behind the Ewald method is to separate both the
difficulties mentioned in the beginning of this section into two parts by using
the following identity:

1
r
= η(r) +

[
1
r
− η(r)

]
. (2.35)

η(r) contains the singularity and is required to be short-ranged (vanishing
exponentially as r → ∞), whereas

[ 1
r − η(r)

]
is long-ranged and required

to be non-singular and slowly varying for all r. For the long-ranged part of
Eq. 2.35, the choice of a slowly varying function has the advantage that its
Fourier transform can be represented accurately by only a few k vectors and
therefore permits an efficient calculation of the long-ranged contribution in
Fourier space [5].

2.2.1 Splitting the Charge Distribution χ(r)

In this section the approach presented in Eq. 2.35 is applied on the charge
distribution χ(r) from Eq. 2.14. χ(r) as presented in Eq. 2.14 can be split by
adding and subtracting a smooth and slowly varying distribution γp(r):

χ(r) = δp(r)−V−1 = χS(r) + χL(r) , (2.36a)
χS(r) = δp(r)− γp(r) , (2.36b)

χL(r) = γp(r)−V−1 , (2.36c)

with χS(r) denoting the short-ranged and χL(r) the long-ranged contribu-
tion to the charge density χ(r) respectively. γp(r) is defined as

γp(r) = ∑
n∈Z3

γn(‖r + L n‖) , (2.37)

with the one-dimensional function γn(r) being the charge-shaping function.
Although the charge-shaping function γn is historically taken to be a nor-
malized spherical Gaussian, this choice comes with some drawbacks; the
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2. Theory

evaluation of the exponential and error functions arising from the use of a
Gaussian is a computationally expensive task and since the Gaussian func-
tion is not finite-ranged, the selection of a specific Gaussian width has a
strong influence on the accuracy [4]. It has been shown in [4] that employing
polynomials truncated to a finite spacial range as charge-shaping functions
leads, amongst other things, to improvements in terms of accuracy and com-
putational efficiency. One of these truncated polynomials is the normalized
spherical hat function and is defined as

γn(r) = (π/3 d4)−1(d− r)H(d− r) , (2.38)

where d is the width of the truncated polynomial and H(x) the discrete
Heaviside step function, i.e. H(x) = 1⇔ x ≥ 0 and H(x) = 0 otherwise.

2.2.2 Splitting the Influence Function Ψ(r)

The influence function Ψ(r) given as a solution of Eq. 2.16 is recovered in
this section by considering the splitted charge distribution χ(r) as defined
in Eq. 2.36a. The normalized spherical hat function γn presented in Eq. 2.38
is used as the charge-shaping function for further calculations; γp from Eq.
2.37 is now explicitly defined as

γp(r) = ∑
n∈Z3

(π/3 d4)−1(d− ‖r + L n‖)H(d− ‖r + L n‖) . (2.39)

An analog equation to Eq. 2.16 is constructed by replacing the singular
function δp(r) with the smoother distribution γp(r):

∇2ΨL(r) = −4π χL(r) = −4π
[
γp(r)−V−1

]
. (2.40)

By imposing the conditions [5]

〈ΨL(r)〉C = 0 and 〈∇ΨL(r)〉C = 0 (2.41)

on Eq. 2.40, the solution resulting from Eq. 2.40 is the influence function
ΨL(r) for the periodic γ-shaped source plus homogeneous neutralizing back-
ground and can be expressed as

ΨL(r) = 4πV−1 ∑
l∈ tZ3, ‖l‖6=0

k−2 γ̂p(k) exp{ikr} , (2.42)
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2.2. The Ewald Method

with

γ̂p(k) = 12(dk)4(2− 2 cos(dk))− dk sin(dk)) (2.43)

being the Fourier coefficients of γp(r) defined in Eq. 2.39 [5]. ΨL(r) is the
long-ranged (non-singular) contribution to the electrostatic potential and is
evaluated in Fourier space. The aim now is to recover the Green’s function
Ψ(r) for the periodic δ-shaped source plus homogeneous neutralizing back-
ground defined in Eq. 2.30 by correcting ΨL(r) using the following equation:

Ψ(r) = ΨL(r) + ΨS(r) + A1 . (2.44)

ΨS(r) accounts for the short-ranged (singular) correction to ΨL(r) and is
defined as the solution of

∇2ΨS(r) = −4π χS(r) = −4π
[
δp(r)− γp(r)

]
. (2.45)

The general solution ΨS(r) of Eq. 2.45 is given by

ΨS(r) = η(‖r + L n‖) + ∑
n∈Z3 , ‖n‖6=0

η(‖L n‖) . (2.46)

In the case of the normalized spherical hat function in Eq. 2.38, η(r) is
defined as

η(r) = (r−1 + 1/2a−3r2 − 3/2a−1)H(d− r) . (2.47)

The term A1 in Eq. 2.44 is needed to satisfy the requirements 〈Ψ(r)〉C =
〈ΨL(r)〉C = 0 [5] and is therefore expressed as

A1 = −〈ΨS(r)〉C = −4πV−1
∫ ∞

0
dr r2 η(r) . (2.48)

Using the definition of η(r) shown in Eq. 2.47, the term A1 from Eq. 2.48
evaluates to [5]

A1 = −4/15πd2V−1 (2.49)

in the case of the normalized spherical hat function in Eq. 2.38.
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2. Theory

2.2.3 The Wigner Potential

A general expression for the Wigner term ΨWI shown in Eq. 2.34 is derived
in this section using the normalized spherical hat function γn presented in
Eq. 2.38. In Eq. 2.34 the constant ΨWI is defined as

ΨWI = lim
r→0

[
Ψ(r)− 1

r

]
. (2.50)

By replacing Ψ(r) in Eq. 2.50 with Ψ(r) from Eq. 2.44 and additionally
defining [5]

A2 = ΨL(0) , (2.51)

A3 = lim
r→0

[
ΨS(r)− r−1

]
, (2.52)

Eq. 2.50 can be rewritten to

ΨWI = A1 + A2 + A3 . (2.53)

Using Eq. 2.40, A2 in Eq. 2.51 can be expressed as

A2 = 4πV−1 ∑
l∈ tZ3, ‖l‖6=0

k−2 γ̂p(k) , (2.54)

with γ̂p(k) being defined in Eq. 2.43. Further, A3 in Eq. can be written as

A3 = −4π
∫ ∞

0
dr γn(r) . (2.55)

Evaluating A3 for the normalized spherical hat function in Eq. 2.38 results
in [5]

A3 = −2d−1 . (2.56)

Finally, by combining Eqs. 2.49, 2.50, 2.54 and 2.56, ΨWI can be numerically
evaluated by using
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2.2. The Ewald Method

ΨWI = −4/15πd2V−1 + 4πV−1

 ∑
l∈ tZ3, ‖l‖6=0

k−2 γ̂p(k)

− 2d−1 . (2.57)

The Wigner term ΨWI depends exclusively on the shape and size of the
unit cell, and in the particular case of a cubic unit cell of edge L, numerical
evaluation leads to ΨWI = ξEW L−1 ≈ −2.837297 L−1 [5].
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Chapter 3

Methods

3.1 Implementation of the Wigner Potential Calcula-
tion in Crystal Systems Using the Ewald Method

The implementation of the Wigner potential calculation based on the Ewald
method derived in Chapter 2.2.3 and shown in Eq. 2.57 is discussed in this
section. Since the expression for ΨWI in Eq. 2.57 contains a sum consisting
of infinitely many terms, the parameter lmax ∈ N with lmax < ∞ was intro-
duced to limit the number of terms for the evaluation of the aforementioned
sum in the implementation [3]. Let L be the set of row vectors l defined as
[3]

L := {l = (l1, l2, l3) : li ∈ [−lmax, lmax] for i = 1, 2, 3 and l 6= 0, ‖l‖2 ≤ l2
max} .
(3.1)

Using the definition of L presented in Eq. 3.1, the expression for the Wigner
potential ΨWI from Eq. 2.57 can be now rewritten as follows to be used in
the implementation:

ΨWI ≈ −4/15πd2V−1 + 4πV−1

[
∑
l∈L

k−2 γ̂p(k)

]
− 2d−1 . (3.2)

The implementation of the Wigner potential calculation in crystal systems
using the Ewald method is provided in Listing A.2; Eq. 3.2 was implemented
in Listing A.2 to calculate the Wigner potential ΨWI , with γ̂p being defined
in Eq. 2.43 and d being the width of the normalized spherical hat function γn
shown in Eq. 2.38. Furthermore, the implementation shown in Listing A.2
accepts a general unit cell size L ∈ R3×3 as a parameter and since in Chapter
2.1.3 k was defined as k = ‖k‖ = ‖2πlL−1‖, for the calculation of the matrix
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3. Methods

inverse L−1 of L Cramer’s rule for 3 × 3 matrices was implemented [14].
An implementation of the Wigner potential calculation in a crystal system
represented by a cubic unit cell of length L using the direct sum [3]

ΨWI ≈ 4πV−1

([
∑
l∈L

k−2

]
− L2 lmax/π

)
(3.3)

is shown in Listing A.1 and was provided at the beginning of the project [6],
where L is the length and V = L3 the volume of the cubic unit cell, and the
set L is defined in Eq. 3.1. Both methods for the calculation of the Wigner
potential from Listings A.1 and A.2 were compared in terms of convergence.

3.2 Calculation of the Optimal Width d of the Normal-
ized Spherical Hat Function γn

In this section an approach for the calculation of the optimal value of the
width d for the normalized spherical hat function γn (Eq. 2.38) is pre-
sented. The actual choice of d in Eqs. 2.38 and 2.57 has influence on the
convergence and therefore the numerical evaluation of the Wigner potential
ΨWI ; with the right choice of d in Eq. 2.38, the correct numerical evalu-
ation of ΨWI for a given unit cell is achieved [6]. The optimal value dopt
that the parameter d in Eq. 2.38 should take is defined as the distance
to the nearest periodic neighbour of a charge [6]; in the case of a cubic
unit cell of length L, the optimal value is defined as dopt = L. Let P be
the unit cell represented by a parallelepiped as described in Chapter 2.1.1
(see Figure 2.1). Although a charge placed at q ∈ P has infinitely many
periodic images of itself spread throughout the crystal system, in three
dimensions it has exactly 26 directly neighbouring periodic images which
come into consideration for the calculation of the optimal value dopt; these
neighbours are referred to as the direct neighbours of q in this thesis. The
charge q itself is placed at the origin of the coordinate system, i.e. q = 0.
N := {n = (n1, n2, n3)ᵀ : ni ∈ {−1, 0, 1} for i = 1, 2, 3 and n 6= 0} repre-
sents the set of repeat vectors needed to define the positions of the direct
neighbours of q with | N | = 26; Eq. A.1.3 lists the complete set N . Further,
let Vq := {v = (v1, v2, v3)ᵀ ∈ R3} be the set of coordinate vectors of all
direct neighbours of q; using Eq. 2.8, vj ∈ Vq is then defined as

vj = q + L nj for j = 1, . . . , 26 , (3.4)

with nj ∈ N . Since the optimal value dopt is defined as the shortest Eu-
clidean distance between q and its direct neighbours vj ∈ Vq , dopt can now
be expressed as
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3.3. Analysis of the Wigner Potential ΨWI Based on the Variation of Shape and
Size of the Unit Cell

dopt = min
vj∈Vq

‖vj − q‖ . (3.5)

The calculation of dopt based on a parallelepiped unit cell P with edge
lengths a, b, c and the angles α, β, γ between the edges is presented in Listing
A.3. A system depicting the neighbourhood of a single charge q ∈ P placed
at the origin surrounded by its 26 direct neighbours as described in Eq. 3.4
is constructed in the implementation; dopt as defined in Eq. 3.5 is then deter-
mined by calculating the Euclidean distance to each direct neighbour and
taking the smallest resulting value.

3.3 Analysis of the Wigner Potential ΨWI Based on the
Variation of Shape and Size of the Unit Cell

The objective was to analyze the behaviour of the Wigner potential ΨWI
based on the variation of the underlying parallelepiped unit cell, since ΨWI
depends exclusively on the shape and size of the unit cell [5]. From this
analysis the goal was to find a simple analytical expression for the Wigner
potential ΨWI as a function of the unit cell size L. The behaviour of ΨWI
was analyzed in a first part by only varying the edge length c of the paral-
lelepiped unit cell and evaluating ΨWI for different values of c (with a = b =
1, α = β = γ = 90◦); in a second part ΨWI was evaluated at various different
values for the angle γ of the unit cell (with a = b = c = 1, α = β = 90◦).
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Chapter 4

Results

4.1 Convergence of the Wigner Potential Calculation
in Crystal Systems Using the Ewald Method

In this section the convergence of both implementations of the Wigner po-
tential calculation presented in Chapter 3.1 is discussed. The numerical
evaluation of the Wigner potential ΨWI for a crystal system represented by
a cubic unit cell of length L results in ΨWI ≈ −2.837297 L−1 [5]. To compare
both methods from Listings A.1 and A.2 in regard to the calculation of the
Wigner potential, a cubic unit cell with L = 1 (a = b = c = 1; see Table 2.1)
was used and lmax was arbitrarly set to lmax = 545; in the case of the cubic
unit cell with L = 1, the Wigner potential should evaluate to the expected
value

ΨWI ≈ −2.837297 . (4.1)

In the following lines, the Wigner potential calculated by the method from
Listing A.1 is denoted as ΨWI, DS and the Wigner potential calculated by
the method from Listing A.2 as ΨWI, EW . Figure 4.1 shows that the absolute
error ∆ΨWI between ΨWI, EW and ΨWI (Eq 4.1) defined as ∆ΨWI = |ΨWI −
ΨWI, EW | (red line) vanishes rather fast; the absolute error ∆ΨWI = |ΨWI −
ΨWI, DS| (blue line) however does not vanish at all for lmax = 545; Figure
4.1 confirms the rather fast convergence of the Wigner potential calculation
using the Ewald method implementation shown in Listing A.2 compared to
the calculation using the direct sum implementation in Listing A.1.
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Figure 4.1: Absolute error ∆ΨWI between the Wigner potential calculated
by both methods from Listings A.1 (blue line; direct sum method) and A.2
(red line; Ewald method) with a cubic unit cell of length L = 1 (lmax = 545)
and the expected Wigner potential ΨWI ≈ −2.837297. The red line has been
magnified by a factor 100 to emphasize the rather fast convergence of the
Ewald method implemented in Listing A.2

4.2 Convergence of the Wigner Potential Calculation
Based on the Choice of Width d of the Normalized
Spherical Hat Function γn

The calculation of dopt as derived in Chapter 3.2 and implemented in Listing
A.3 was tested with different cubic, tetragonal, orthorhombic, rhombohedral,
monoclinic, and triclinic unit cells (Table 2.1). Figures 4.2, 4.3, 4.5, 4.4, 4.6,
and 4.7 show the absolute error ∆ΨWI between the correct Wigner potential
ΨWI calculated with the optimal width dopt [6] and ΨWI calculated with
a varying width d for the respective shape of the unit cell using lmax =
300; each of the plots shows as expected an increase of the absolute error
∆ΨWI for d > dopt, describing a divergence and thus a wrong numerical
evaluation of ΨWI for d > dopt. The results confirm that using d = dopt for
the calculation of ΨWI defined in Eq. 3.2 is advised, resulting in the correct
numerical evaluation of ΨWI as expected [6].
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4.3. Behaviour of the Wigner Potential ΨWI Based on the Variation of Shape and
Size of the Unit Cell
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Figure 4.2: Absolute error ∆ΨWI between the Wigner potential ΨWI calcu-
lated with the optimal width dopt [6] and ΨWI calculated with a varying
width d for a cubic unit cell with edge lengths a = b = c = 2.8 (Table 2.1)
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Figure 4.3: Absolute error ∆ΨWI between the Wigner potential ΨWI calcu-
lated with the optimal width dopt [6] and ΨWI calculated with a varying
width d for a tetragonal unit cell with edge lengths a = b = 1, c = 3.8 (Table
2.1)
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Figure 4.4: Absolute error ∆ΨWI between the Wigner potential ΨWI calcu-
lated with the optimal width dopt [6] and ΨWI calculated with a varying
width d for a rhombohedral unit cell with edge lengths a = 1, b = 1, c = 1
and angles α = β = γ ≈ 32.7042◦ (Table 2.1)
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Figure 4.5: Absolute error ∆ΨWI between the Wigner potential ΨWI calcu-
lated with the optimal width dopt [6] and ΨWI calculated with a varying
width d for a orthorhombic unit cell with edge lengths a = 1, b = 2.8, c = 3
(Table 2.1)
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4.3. Behaviour of the Wigner Potential ΨWI Based on the Variation of Shape and
Size of the Unit Cell
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Figure 4.6: Absolute error ∆ΨWI between the Wigner potential ΨWI calcu-
lated with the optimal width dopt [6] and ΨWI calculated with a varying
width d for a monoclinic unit cell with edge lengths a = 1, b = 3.8, c = 4 and
angle β ≈ 32.7042◦ (Table 2.1)
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Figure 4.7: Absolute error ∆ΨWI between the Wigner potential ΨWI calcu-
lated with the optimal width dopt [6] and ΨWI calculated with a varying
width d for a triclinic unit cell with edge lengths a = 1, b = 3.8, c = 4 and
angles α ≈ 32.7042◦, β ≈ 26.9746◦, γ ≈ 21.2450◦ (Table 2.1)
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4. Results

4.3 Behaviour of the Wigner Potential ΨWI Based on
the Variation of Shape and Size of the Unit Cell

In Figure 4.14 the behaviour of ΨWI (Eq. 3.2) with varying edge length c ∈
[0, 10] of the parallelepiped unit cell with the edge lengths a = b = 1 and the
angles α = β = γ = 90◦ is shown. The graph displayed in Figure 4.14 shows
a rather interesting behaviour for smaller values of c in the interval [0, 2]
and seems to remain steady for large enough values of c. In the latter case, a
linear regression suggests that ΨWI behaves like ΨWI(c) = 1.0472 c− 3.9003
for c ∈ (2, 10], with a rather small residual sum of squares of 3.9480× 10−10,
indicating a good fit of the model to the data in that region of the graph.
Figure 4.15 shows the interesting behaviour of ΨWI for values of c ∈ [0, 2]
discussed earlier. The fitting of both the curve presented in Figures 4.15 and
4.16 respectively was tackled with the help of nonlinear regression provided
by the Mathematica environment [12]. In Figure 4.8 a possible fitting of
the curve from Figure 4.15 is shown, where the model describing the fitting
curve takes the form of

ΨWI(c) = s1 + s2 c + s3 exp{−s4 c} , (4.2)

with the model parameters si shown in Table 4.1. Another possible fitting of
the curve in Figure 4.15 may be given by the model

ΨWI(c) = t1 + t2 c + t3 exp{−t4 c− t5 c2 − t6 c3 − t7 c4 − t8 c5} (4.3)

shown in Figure 4.10, with the model parameters ti defined in Table 4.2. The
residuals for the model defined in Eq. 4.3 shown in Figure 4.11 display an
improvement compared to the residuals in Figure 4.9 for the model from Eq.
4.2 by increasing the number of model parameters in Eq. 4.3; nonetheless,
both residuals in Figures 4.9 and 4.11 respectively have trends, which actu-
ally indicates that both underlying models are not ideal for the given curve
in Figure 4.15 and should be modified [13]. Figure 4.14 shows the behaviour
of ΨWI with varying angle γ ∈ (0, π/2) of the parallelepiped unit cell with
the edge lengths a = b = c = 1 and the angles α = β = 90◦; in Figure 4.12
a possible fitting of the curve presented in Figure 4.16 with the use of the
model

ΨWI(γ) = u1 + u2 γ− u3 exp{−u4 γ− u5 γ2 − u6 γ3} (4.4)

is shown, with the model parameters ui listed in Table 4.3. The residuals
shown in Fig. 4.13 corresponding to the model in Eq. 4.4 show trends,
indicating that the model presented in Eq. 4.3 needs to be further modified
to fit the curve in Fig. 4.16 [13]. The goal was to analyze the behaviour
of ΨWI with the goal to find a rather simple analytical form of ΨWI for the
calculation of ΨWI depending on the unit cell size describing the unit cell.
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4.3. Behaviour of the Wigner Potential ΨWI Based on the Variation of Shape and
Size of the Unit Cell

The models presented in Eqs. 4.2, 4.3 and 4.3 each depend on a rather large
number of model variables, which suggests that no simple analytical form
of ΨWI may exist.
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Figure 4.8: Fitting curve (red line) described by Eq. 4.2 using the parameters
shown in Table 4.1 for the curve displayed in Fig. 4.15 (black line) with
values c ∈ [0, 2], a = b = 1, α = β = γ = 90◦
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Figure 4.9: Residuals for the fitting curve described by Eq. 4.2 using the
parameters shown in Table 4.1 compared to the curve in Fig. 4.15 with
values c ∈ [0, 2], a = b = 1, α = β = γ = 90◦
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Figure 4.10: Fitting curve (red line) described by Eq. 4.3 using the parame-
ters shown in Table 4.2 for the curve displayed in Fig. 4.15 (black line) with
values c ∈ [0, 2], a = b = 1, α = β = γ = 90◦
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Figure 4.11: Residuals for the fitting curve described by Eq. 4.3 using the
parameters shown in Table 4.2 compared to the curve in Fig. 4.15 with
values c ∈ [0, 2], a = b = 1, α = β = γ = 90◦
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Figure 4.12: Fitting curve (red line) described by Eq. 4.4 using the parame-
ters shown in Table 4.3 for the curve displayed in Fig. 4.16 (black line) with
values γ ∈ (0, π/2), a = b = c = 1, α = β = 90◦
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Figure 4.13: Residuals for the fitting curve described by Eq. 4.4 using the
parameters shown in Table 4.3 compared to the curve in Fig. 4.16 with
values γ ∈ (0, π/2), a = b = c = 1, α = β = 90◦
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Size of the Unit Cell

Table 4.1: Model parameters si and corresponding standard error for the
model defined in Eq. 4.2 and presented in Figure 4.2

Parameter Standard Error
s1 = −3.47856 0.0397291
s2 = 0.767877 0.0309975
s3 = 75.0268 1.32703
s4 = 13.3042, 0.140895

Table 4.2: Model parameters ti and corresponding standard error for the
model defined in Eq. 4.3 and presented in Figure 4.3

Parameter Standard Error
t1 = −3.80745 0.00864341
t2 = 0.9812 0.006892
t3 = 179.522 1.83128
t4 = 26.8539, 0.177146
t5 = −63.6863 0.992284
t6 = 97.0969 2.22187
t7 = −62.2693 1.76991
t8 = 13.4444 0.457985

Table 4.3: Model parameters ui and corresponding standard error for the
model defined in Eq. 4.4 and presented in Figure 4.12

Parameter Standard Error
u1 = −3.9582 0.0351415
u2 = 1.4379 0.0474756
u3 = 20.041 0.252774
u4 = 12.5677, 0.167667
u5 = −12.3504 0.274142
u6 = 3.52517 0.107532
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Figure 4.14: Behaviour of the Wigner potential ΨWI with varying edge length
c ∈ [0, 10], edge lengths a = b = 1 and angles α = β = γ = 90◦
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Figure 4.15: Behaviour of the Wigner potential ΨWI with varying edge length
c ∈ [0, 2], edge lengths a = b = 1 and angles α = β = γ = 90◦
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Figure 4.16: Behaviour of the Wigner potential ΨWI with varying angle γ ∈
(0, π/2), edge lengths a = b = c = 1 and angles α = β = 90◦
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Chapter 5

Conclusion

The Ewald method provides an efficient way to calculate the Wigner po-
tential; the implementation of the Wigner potential calculation using the
Ewald method showed a rather fast convergence by using only a small num-
ber of l vectors to converge. Further, a calculation of the optimal value for
the parameter d in the calculation of the Wigner potential using the Ewald
method showed to be very important; the convergence of the Wigner poten-
tial calculation depends on the right choice dopt of the parameter d, which
was defined as the distance to the nearest periodic neighbour. For values d
greater than this optimal value tests showed a clear divergence of the Wigner
potential calculation and thus a wrong numerical evaluation of the Wigner
potential. Finally, the goal of this thesis was to find an analytical expression
for the Wigner potential ΨWI based on the variation of the shape and size
of the unit cell. The curves generated by a variation of the edge length c
and by a variation of the angle γ were fitted with models approximated by
a nonlinear regression. In the case of the curve resulting from the varia-
tion of the edge length c two models were approximated for the fitting of
the curve; one consisting of 4 model parameters and the other consisting
of 8. The increase of the number of model paramaters in this case resulted
in a decrease of the maximum value of the residues; nonetheless, the ap-
proximated models were not suited for the given curve, since the residues
showed a trend instead of resembling white noise. These results show that
a simple analytical expression for the Wigner potential may not exist, since
by only varying one parameter of the unit cell the model needed to fit the
resulting curve may consist of a rather large number of model parameters,
which may contradict the desired simple nature of an analytical expression
for the Wigner potential.
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Appendix A

Appendix

A.1 General Mathematical Definitions

A.1.1 Fourier Series Expansion

The Fourier series expansion of a function s(r) is given by

s(r) = V−1 ∑
l∈ tZ3

ŝ(k) exp{ikr} , (A.1)

The Fourier coefficients ŝ(k) are derived using

ŝ(k) =
∫ ∫ ∫

C
d3rs(r) exp{−ikr} ; (A.2)

ŝ(k) is also called the Fourier space version of s(k).

A.1.2 Fourier Coefficients of a Convolution

The convolution (s ? t) of two functions s and t is defined as

(s ? t)(x) =
∫ ∞

−∞
dx′s(x′)t(x− x′) . (A.3)

The Fourier coefficients of the convolution shown in Eq. A.3 are related by
the following simple multiplication:

(̂s ? t)(k) = ŝ(k)t̂(k) . (A.4)
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A.1.3 Definition of the Set N of Repeat Vectors for Direct Neigh-
bours of a Charge

N ={(−1,−1,−1)ᵀ, (−1,−1, 0)ᵀ, (−1,−1, 1)ᵀ, (−1, 0,−1)ᵀ, (−1, 0, 0)ᵀ,
(A.5)

(−1, 0, 1)ᵀ, (−1, 1,−1)ᵀ, (−1, 1, 0)ᵀ, (−1, 1, 1)ᵀ, (0,−1,−1)ᵀ,
(0,−1, 0)ᵀ, (0,−1, 1)ᵀ, (0, 0,−1)ᵀ, (0, 0, 1)ᵀ, (0, 1,−1)ᵀ, (0, 1, 0)ᵀ,
(0, 1, 1)ᵀ, (1,−1,−1)ᵀ, (1,−1, 0)ᵀ, (1,−1, 1)ᵀ, (1, 0,−1)ᵀ,
(1, 0, 0)ᵀ, (1, 0, 1)ᵀ, (1, 1,−1)ᵀ, (1, 1, 0)ᵀ, (1, 1, 1)ᵀ} ,

with |N | = 26.

A.2 Source Code

A.2.1 Implementation of the Wigner Potential Calculation in a
Crystal System Represented by a Cubic Unit Cell of Length
L Using a Direct Sum [3]

Listing A.1: Implementation of the Wigner potential calculation in a crystal
system represented by a cubic unit cell of length L using a direct sum [3]
double ewald_self_cube_direct(double L, int lmax) {

int lx , ly , lz , l2;

double kx , ky , kz , k2 , rk;

double bx = L;

double by = L;

double bz = L;

double vol = bx*by*bz;

int lmax2 = lmax*lmax;

double pi = 4.0* atan2 (1.0 ,1.0);

double sum = 0.0;

for ( lx = -lmax; lx <= lmax; lx++ ) {

for ( ly = -lmax; ly <= lmax; ly++ ) {

for ( lz = -lmax; lz <= lmax; lz++ ) {

l2 = lx*lx + ly*ly + lz*lz;

if ( ( lx !=0 || ly != 0 || lz != 0 ) && l2 <=

↪→ lmax2 ) {

kx = (2.0*pi/bx)*lx;
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ky = (2.0* pi/by)*ly;

kz = (2.0* pi/bz)*lz;

k2 = kx*kx + ky*ky + kz*kz;

sum += 1.0/k2;

}

}

}

}

sum -= L*L*lmax/pi;

sum *= 4.0*pi/vol;

return sum;

}

A.2.2 Implementation of the Wigner Potential Calculation in Crys-
tal Systems Using the Ewald Method

Listing A.2: Implementation of the Wigner potential calculation in crystal
systems using the Ewald method

double calc_wigner_potential_ewald(Matrix <double >& L,

↪→ double d, int lmax) {

assert(L.size1() == 3);

assert(L.size2() == 3);

Matrix <double > L_inv(L.size1(), L.size2());

inverse_33(L,L_inv);

vector <double > l(3);

vector <double > k(3);

int lmax2 = lmax*lmax;

int l_length_sqr = 0;

double k_length_sqr = 0;

double d_k = 0;

double sum = 0;

double vol = abs(determinant_33(L));

for (int lx = -lmax; lx <= lmax; lx++ ) {

for (int ly = -lmax; ly <= lmax; ly++ ) {

for (int lz = -lmax; lz <= lmax; lz++ ) {

l_length_sqr = lx*lx + ly*ly + lz*lz;
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if ( ( lx !=0 || ly != 0 || lz != 0 ) &&

↪→ l_length_sqr <= lmax2 ) {

l[0] = lx;

l[1] = ly;

l[2] = lz;

vm_multiplication(l, L_inv , k);

sv_multiplication (2*M_PI , k);

k_length_sqr = k[0] * k[0] + k[1] * k[1] +

↪→ k[2] * k[2];

d_k = d * sqrt(k_length_sqr);

sum += 12.0/( d_k * d_k * d_k * d_k) * (2.0

↪→ - 2.0* cos(d_k) - d_k * sin(d_k)) /

↪→ k_length_sqr;

}

}

}

}

sum *= 4.0 * M_PI / vol;

sum += -(4.0 / 15.0) * M_PI / vol * d * d - 2.0 / d

↪→ ;

return sum;

}

A.2.3 Implementation of the Calculation of dopt for a Parallelepiped
Unit Cell

Listing A.3: Implementation of the calculation of dopt based on the parame-
ters a, b, c, α, β, γ describing the parallelepiped unit cell
double calc_min_distance(double a, double b, double c

↪→ , double alpha , double beta , double gamma){

vector <coord_3d > nearest_neighbors_coords (26);

double step_size = 1;

int i = 0;

coord_3d coord;

/*

Set up coordinates of the neareast neighbors of

↪→ the charge q

at the origin of the coordinate system
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*/

for (double x = -1; x <= 1; x+= step_size)

{

for (double y = -1; y <= 1; y+= step_size)

{

for (double z = -1; z <= 1; z+= step_size)

{

coord.x = x;

coord.y = y;

coord.z = z;

if(x == 0 && y == 0 && z == 0)

continue;

nearest_neighbors_coords[i] = coord;

i++;

}

}

}

Matrix <double > L(3,3);

get_unit_cell_size_parallelepiped(a, b, c, alpha ,

↪→ beta , gamma , L);

vector <double > coord_cart (3);

vector <double > coord_fract (3);

double min_distance = DBL_MAX;

double curr_distance = 0;

for (int i = 0; i < nearest_neighbors_coords.size()

↪→ ; ++i)

{

coord_fract [0] = nearest_neighbors_coords[i].x;

coord_fract [1] = nearest_neighbors_coords[i].y;

coord_fract [2] = nearest_neighbors_coords[i].z;

// Transform fractional coordinates to cartesian

↪→ coordinates

mv_multiplication(L, coord_fract , coord_cart);

curr_distance = sqrt(( coord_cart [0]* coord_cart

↪→ [0])

+ (coord_cart [1]* coord_cart [1])
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+ (coord_cart [2]* coord_cart [2]));

if(curr_distance < min_distance)

min_distance = curr_distance;

}

return min_distance;

}
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